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Long-term vision: Making machine learning and modern artificial intelligence tools more accessible to small
organizations and the public. This vision requires a wider education agenda, but also technical innovation on
the optimization and tuning of machine learning components as well as big systems.

Modern data-driven applications rely on powerful computational infrastructure and skilled machine learning
experts, to deliver analytical insights. Big organizations like web companies, retailers and government have
the resources to attract experts and maintain powerful infrastructure. On the other hand, social groups, NGOs
and academic research units lack funding and struggle to attract the people and maintain infrastructure. To
make machine learning accessible, it is necessary that we bridge the gap between tools, human capital and
infrastructure. Work towards this ambitious vision can be broken into three major thrusts:

1. Optimize popular tools to make them resource-efficient. This includes work on faster algorithms and
systems that perform well with less computation and less data, lowering the cost of entry for small groups.
A big part of my research effort goes into understanding the fundamental limits of popular techniques and
coming up with resource-light alternative algorithms and systems.

2. Automate the tuning and assembly of machine learning pipelines. Modern machine learning is often
compared to alchemy: practitioners report impressive results, achieved through painstaking trial-and-
error selection of models and hyperparameters. The goal is for modern machine learning to become a
science: we ought to develop the systematic methodology and theory that guide these practices with
a guaranteed result. Tuning complex systems requires understanding their computational and statistical
behavior and providing data-dependent guarantees—a focus of my research.

3. Educate a new generation of experts to develop these machine learning tools and a wider base of non-
experts capable of using them. To that end, we use generous funding from public organizations to train
more people in research. We are also developing a new professional masters program at Mila/UdeM, as
well as one-year graduate diplomas in ML.

Research overview
I am interested in the theory, algorithms and systems in the intersection of statistics and computation. I aim to
understand the theory and practical desiderata, and take a high-level look at entire ML pipelines, improving the
various components to make a better overall system. My research touches upon themes of optimization, sampling,
analytical guarantees and tuning, all necessary for bringing this vision about. It spans high-dimensional statistics,
machine learning, optimization, statistical inference and large-scale distributed systems.

New theoretical insights on classic tools. Methods like principal component analysis [16], PageRank [14],
stochastic gradient descent (SGD) [10, 9] and Gibbs sampling [11, 7] are ubiquitous, because they have proved
their merit time and again. My work considers classic, massively deployed tools from a new perspective. In some
cases it provides new, data-dependent guarantees [15, 11, 16], introduces new ways to prove the fundamental
limits of problems via lower bounds [19, 18], or reveals previously unknown interactions between algorithms
and hardware [10]. Other times it introduces modifications to extend use cases, improve performance and reduce
the resource footprint [14, 16]. Working on classic tools means research with a high potential for impact.

Implementation and Systems. Theoretical and algorithmic breakthroughs have a bigger impact when translated
into a real system. I find that working on a system prototype is useful as a proof of concept, as a source of new
technical challenges and research questions, and as an experimentation platform. In Omnivore [12], we used
my theoretical understanding of asynchrony [10] in our prototype deep learning system that was an order of
magnitude faster than state-of-the-art systems. Following up on that work, we implemented and deployed a deep
learning system on 10,000 machines [8]. In [14], I modified GraphLab to improve its PageRank performance. In
[15], I implemented and deployed our graph algorithm on hundreds of AWS nodes using MapReduce.

A relationship with industry and research labs is a valuable source of technical challenges and collaborations.
I maintain active collaborations with colleagues at Google Brain, Microsoft Research, and SAIL and ElementAI
in Montréal. My asynchrony work [10] resulted into a joint project with Intel and NERSC and a publication at
Supercomputing 2017 [8]. My work on momentum-based adaptive optimizers for deep learning has been picked
up by industrial labs [6]. My past work on PageRank for large graphs [14] was motivated by interactions with
Teradata and booking.com. I have given numerous invited talks at industrial labs, a process that I consider to be
important for effective technology transfer.



Recent work highlights

Asynchrony induces momentum [10, 12, 8, 6]. In the seminal theory paper for this line of work [10], I showed
that running SGD asynchronously can be viewed as adding a momentum-like term to the SGD iteration. An
important implication is that tuning the momentum parameter is necessary when deploying large asynchronous
systems, and that some systems in use by big labs are tuned suboptimally. In cases of heavy asynchrony, using
a negative algorithmic momentum value can improve performance. Our results, tested in the form of a prototype
system [12], gained attention from industry and national labs. We used our novel theoretical understanding of the
interaction between system and optimization dynamics from to provide an efficient hyperparameter optimizer
and achieve performance 1.9× to 12× better than the fastest state-of-the-art systems. Expanding on this work,
and in collaboration with Intel and NERSC at Lawrence Berkeley Labs, we implemented a very large scale deep
learning system, consisting of almost 10,000 machines, and used it for science applications [8].

Optimal scan order in Gibbs sampling [11, 7]. Gibbs sampling iteratively draws variables from their conditional
distributions. There are two common scan orders: random and systematic scan. It had been conjectured that
the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor. We
showed by counterexample that this is not the case, and proved that the mixing times do not differ by more
than a polynomial factor under mild conditions [11]. To prove these relative bounds, I introduced a method
of augmenting the state space to study systematic scan using conductance. In a different paper [7] we took
a coupling-based analysis method by Dobrushin, and repurposed it to get model-dependent guarantees and
customized scan sequences for Gibbs samplers that target specific variables.

Streaming PCA [16, 13]. Known phase transition results suggest that in the noisy setting the number of sam-
ples required to recover principal components is O(dimension). This means that batch algorithms require
O(dimension2) memory and storage and motivates a memory-limited, single-pass streaming algorithm. My work
was the first to provide an algorithm along with global convergence guarantees and tight characterization of
the sample complexity for the streaming PCA problem [16]. It is easily parallelizable and can handle an over-
whelming number of sample entry erasures [13]. It has been implemented by Julia and R developers in the
StreamingPCA and OnlinePCA packages, which have been downloaded over a thousand times.

Current and proposed work

In the first months of my work as an assistant professor, I started four new projects, on the optimization dynamics
of adversarial objectives, on the generalization properties of neural networks, an exploration of Stein’s method
for sampling from complex distributions, and an application of deep learning on 3D data. These directions,
along with other work I contributed to, have yielded 5 manuscripts under review (cf. CV) and 2 accepted papers
[4, 5]. On these projects I supervised 6 students and interns and mentored 4 more. The proposed agenda follows.

Optimization

There are often overlooked insights hiding in popular methods, waiting to be discovered. Using exact tools, like
families of orthogonal polynomials, to analyze system and optimization dynamics is a promising direction with
great expository value. As a first example, we published a paper on accelerated PCA [4]. This kind of analysis
also led us to a momentum-based adaptive optimizer of deep learning [6].

Robustness properties of Polyak’s momentum. My recent work explored tuning rules for the heavy ball method,
also known as Polyak’s momentum [6]. An interesting side-effect was the discovery of a previously unreported
property: when tuned optimally, Polyak’s momentum equalizes the rates of convergence along all directions (equiv-
alently, all optimization variables). For example, on a quadratic problem the dynamics of multi-variable opti-
mization decompose into separable scalar dynamics along the eigenvectors of the Hessian. When the momentum
value is optimal (or higher), those independent scalar dynamics follow the exact same rate of convergence. That
rate depends solely on the value of momentum, not on variations of curvature or step size. This property is
not necessary for achieving acceleration and is unique to Polyak’s momentum; Nesterov’s accelerated gradi-
ent (NAG) does not possess this property. I plan to explain the implications of this property on convex and
non-convex settings, focusing on the dynamics, ability to escape saddle points and generalization performance.

Accelerated stochastic optimization. NAG and the heavy ball provide accelerated convergence for convex
problems in the full batch setting. Tail-averaging yields an optimal asymptotic rate in the online stochastic



setting. Until recently, there was no method that provably achieves both: an accelerated rate during early phases
of stochastic optimization and an optimal asymptotic rate in the later phases. Work by Jain et al. proposes
such an accelerated stochastic method for least squares regression. That method requires the careful tuning of
3 hyperparameters, and uses an intricate sequence of 3 convex combinations of different iterates to achieve this
result. The method betrays no insight about its inner workings or the problem at hand. It is for these reasons
desirable to design an accelerated stochastic optimization method that is based on simpler, already understood,
components and would depend of fewer hyperparameters. The proposed work relies on a gradient estimator that
is unbiased (like in SGD), but can achieve the optimal asymptotic variance decay for specific classes of problems
(for example, quadratics) by optimally adjusting step sizes over time. This kind of estimator, in combination
with an outer loop of acceleration, based on NAG or the heavy ball method, will be the main object of study.

Dynamics of adversarial optimization. Following up on the theme of studying optimization dynamics in special
settings [10], I plan to study the dynamics of differentiable games. One prime example in ML are Generative
Adversarial Networks (GANs). The ML community has been using tools meant for optimization, like gradient
descent. However, adversarial objectives demonstrate very special dynamics that slow down convergence; these
dynamics are rotational, and are reminiscent of momentum dynamics. In a recent NIPS submission we explore
this idea and prove that using negative momentum can help with certain GANs [3]. I plan to explore this
direction deeper, especially through the study of operators carefully designed to minimize rotational dynamics.

Inference

Targeted, optimized inference. The main hyperparameter in Gibbs sampling, is the scan: the order in which each
variable is sampled. In [11] we studied the relative efficacy of systematic, and uniform random scans. Non-uniform
scans, however, can lead to more accurate inferences both in theory and in practice. This effect is particularly
pronounced when certain variables are of greater inferential interest. A first step in optimizing the scan order is
our recent paper that uses couplings to optimize the scan sequence, applicable on fast-mixing distributions [7]. I
plan to explore other approaches for optimized, targeted scan sequences for general distributions.

Stein’s method and efficient sampling. A recent line of work in the statistics and machine learning literature
has been using Stein’s method to facilitate sampling from complex distributions; e.g. when the normalization
constant is not known, but we still have access to the score function. Stein variational gradient descent uses a set
of particles to approximate the target distribution, and poses the problem as optimization. Other work applies the
Stein operator in reproducing kernel Hilbert spaces allowing for even simpler sampling. Most of this literature
is still missing some important algebraic and geometric insights about these operators and spaces. Along with a
mathematically inclined student I work with, I plan to explore some of these insights and potential methods that
come out of a geometric interpretation of the Stein operator, starting with a projection-based method for fitting
the set of particles to the target distribution, and the idea of using negatively weighted particles.

Deep learning

Neural networks and generalization. In a recently started project with one of my students we are studying the
generalization properties of wide and deep neural networks under the lens of a bias-variance decomposition.
The textbook bias-variance decomposition picture suggests a trade-off: complex models can achieve low bias,
but they suffer because of high variance in the prediction. The latter implies bad generalization. Preliminary
results, however, suggest that deep networks of increasing width also exhibit decreasing variance. This is a new
approach to explaining the good generalization of over-parametrized neural networks. In the same thread, I plan
to start a research project to study data- an distribution-dependent generalization bounds.

Robustness to adversarial attacks. In the past year I have co-authored two manuscripts on defenses for adver-
sarial attacks ([2, 1] under review). The question of adversarial robustness is interesting and critical for the use
of deep learning on mission-critical applications. I plan to pursue theoretical work in the area.

The University of Montréal and Mila have offered a productive and hospitable home for my research. I am
always looking for strong students to push the boundary on all of these exciting research directions.
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