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This document proves an executive summary of the work on machine learn-
ing optimization by me and my group in the past 4 years.

1 Smooth games and their numerical methods

The success of GANs [14] for generative modeling have recently spurred interest
in machine learning for the optimization of smooth games, where interacting
agents minimize different objectives (e.g. the generator and discriminator for
GAN). Smooth games also appear in various setups like domain adaptation [3]
and particular formulations of reinforcement learning [22]. On the other hand,
this multi-objective optimization gives rise to much different behavior than in
standard objective minimization and could benefit from tailored optimization
algorithms different than just simple SGD [9].

Our work In this line of research, we pushed forward the analysis and devel-
opment of algorithms for smooth game optimization in the deterministic and
stochastic setting.

Our 2019 AISTATS paper was one of the first pieces of work to motivate
and push the ML community for a deeper foundational analysis of adversarial
problems and their methods [13]. Researchers in the field had been using the
same methods as in single-objective optimization and also using the same hyper-
parameter values. First we showed that positive momentum is problematic for
that class of problems and proved that negative values of momentum are often
optimal [13]. We then pointed out that the ML and mathematical optimization
communities do not know what rates are optimal; the fundamental limits were
missing. Our 2019 ICML work addresses this issue by providing the first linear
lower bounds [17] and condition numbers for smooth games.

Then, equipped with an idea of optimality, we tackled the question of ac-
celeration. First we used classic spectral tools used on classic linear systems
work to establish optimal methods for quadratic games [8]. Then, we provided
a deeper study of the popular extragradient method. That work provides the
tightest and most general guarantees for this very important method in the
field [7].

1



Finally, we tackled the question of stochasticity which was known to be
more insidious in adversarial problems [11]. We adopted the recently proposed
Hamiltonian family of methods and provided the first global non-asymptotic
last-iterate con- vergence guarantees a class of stochastic games notably includ-
ing some non-convex non-concave problems [19]. In a recent pre-print we dug
deeper into the connection between stochasticity. We we introduce the expected
co-coercivity condition, explain its benefits, and provide the first last-iterate con-
vergence guarantees of SGDA and SCO under this condition for solving a class
of stochastic variational inequality problems that are potentially non-monotone.

Motivated by the importance and increasing popularity of work in the area,
we organized two consecutive NeurIPS workshops:

• SMOOTH GAMES OPTIMIZATION AND MACHINE LEARNING WORK-
SHOP, https://sgo-workshop.github.io/index_2018.html

• BRIDGING GAME THEORY AND DEEP LEARNING, https://sgo-workshop.
github.io

2 Modern optimization and deep learning

At the heart of the training algorithm for deep networks lies an optimization
algorithm. Variants of stochastic gradient descent (SGD) have become the
workhorse for modern large-scale optimization typical of machine learning [10],
but many open questions remain.

Our work The goal of this research axis has been to develop and analyze new
optimization algorithms in the context of modern deep learning.

In an oral SysML 2019 paper we gave an adaptive momentum method, with
empirically better generalization properties that Adam and other popular opti-
mizers [26]. In collaboration with colleagues at Google Brain, we then turned
our attention to parameter-free stochastic versions of SGD, which provide the
optimal variance reduction of online optimization and work for deterministic
methods without different tuning. Our paper was selected for oral presentation
at NeurIPS 2019 [4]. More recently, my students and I have gotten involved
in a deep, fundamental study of different definitions of the condition number
typically used in optimization (AISTATS 2021) [15]. We believe that this work
is bound to have deep repercussions on our definitions for optimality and accel-
eration, but could also lead to better methods. We are currently following up
on that foundational work.

On a slightly different thread we have been exploring algernatives to back-
propagation; i.e. methods that do not exactly calculate the gradient. We first
published to ICLR 2019 an empirical exploration of variants of backpropaga-
tion with better performance on LSTM models [6]. We also have a paper under
submission on the analysis of feedback alignment, proposed in [18].
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3 The generalization properties of deep learning

Optimization seeks to minimize an objective (e.g. the training error of a neural
network) while the goal in supervised learning is to generalize well (i.e. small test
error on unseen data). The empirical success of large overparameterized models
have recently made the community revisit the interplay between optimization
and generalization. In particular, modern neural networks have the capacity to
overfit the training data and yet standard SGD algorithms often appear to yield
networks with good generalization [25, 5]. A promising line of work to explain
this behavior is to investigate the implicit regularization bias of optimization
algorithms on modern architectures [21, 16, 23, 24].

Our work We further our theoretical understanding of deep learning by study-
ing the basics of the bias-variance decomposition, providing robust methodology
for large-scale empirical generalization studies and provide methodology and
analysis the problems in the wide area of out-of-distribution generalization.

We provided the first modern, large-scale measurement of bias and variance
in the predictions of neural networks [20]. There we showed that the classic
understanding of the behavior of variance was incorrect; a phenomenon later
dubbed as double descent. More recently, in a NeurIPS 2020 collaboration with
colleagues from UofT, we borrowed robust tools from causal inference to pro-
vide robust methodology for the large-scale empirical study of generalization
performance in neaural networks [12].

On a second thread, we look at the problem of out-of-distribution general-
ization; a learning setting where the test examples are not drawn from the same
distribution as the training examples. We start from the slightly more limited
setting of domain generalization and provide a method based on distribution
matching [2]. Motivated by this work, we look deeper into the fundamental
limits of out-of-distribution generalization [1].
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