
Fast PageRank Approximations
on Graph Engines

FrogWild! Ioannis Mitliagkas
Michael Borokhovich
Alex Dimakis
Constantine Caramanis

Web Ranking

2

B D

C

E

A

Find “important” pages
Given web graph

D

Web Ranking

2

B D

C

E

A

Find “important” pages
Given web graph

Rank Based on In-degree
Classic Approach

Web Ranking

2

B D

C

E

A

Find “important” pages
Given web graph

S

S S

S

A D

Rank Based on In-degree
Classic Approach

Susceptible
to manipulation by spammer networks

PageRank [Page et al., 1999]

3

B D

C

E

A

⇡
Page Importance
Described by distribution

PageRank [Page et al., 1999]

3

B D

C

E

A

⇡

⇡
Page Importance
Described by distribution

Recursive Definition
Important pages are pointed to by
❖ important pages are pointed to by

❖ important pages are pointed to by…

PageRank [Page et al., 1999]

3

B D

C

E

A

⇡

⇡
Page Importance
Described by distribution

Recursive Definition
Important pages are pointed to by
❖ important pages are pointed to by

❖ important pages are pointed to by…

Robust
to manipulation by spammer networks

PageRank - Continuous Interpretation

4

Start: Gallon of water distributed evenly

B D

C

E

A

PageRank - Continuous Interpretation

4

Start: Gallon of water distributed evenly

B D

C

E

A

Every Iteration
Each vertex spreads water evenly to successors

PageRank - Continuous Interpretation

4

Start: Gallon of water distributed evenly

B D

C

E

A

Every Iteration
Each vertex spreads water evenly to successors

B D

C

E

A

PageRank - Continuous Interpretation

4

Start: Gallon of water distributed evenly
Every Iteration
Each vertex spreads water evenly to successors

Redistribute evenly
a fraction, pT = 0.15, of all water

Repeat until convergence

PageRank - Continuous Interpretation

4

Start: Gallon of water distributed evenly

B D

C

E

A

Every Iteration
Each vertex spreads water evenly to successors

Redistribute evenly
a fraction, pT = 0.15, of all water

⇡
Power Iteration employed usually

Discrete Interpretation

5

B D

C

E

A

Frog walks randomly on graph
Next vertex chosen uniformly at random

Discrete Interpretation

5

B D

C

E

A
1

Frog walks randomly on graph
Next vertex chosen uniformly at random

Discrete Interpretation

5

B D

C

E

A

1/3

1/3

1/3

Frog walks randomly on graph
Next vertex chosen uniformly at random

Discrete Interpretation

5

B D

C

E

A

1

Teleportation
Every step: teleport w.p. pT

Frog walks randomly on graph
Next vertex chosen uniformly at random

Discrete Interpretation

5

B D

C

E

A

Teleportation
Every step: teleport w.p. pT

Frog walks randomly on graph
Next vertex chosen uniformly at random

Discrete Interpretation

5

B D

C

E

A

Teleportation
Every step: teleport w.p. pT

Sampling after t steps
Frog location gives sample from ⇡

Frog walks randomly on graph
Next vertex chosen uniformly at random

Discrete Interpretation

5

B D

C

E

A

Teleportation
Every step: teleport w.p. pT

Sampling after t steps
Frog location gives sample from ⇡

PageRank Vector
Many frogs, estimate vector ⇡

Frog walks randomly on graph
Next vertex chosen uniformly at random

⇡

PageRank Approximation

6

Looking for k “heavy nodes”
Do not need full PageRank vector

Random Walk Sampling
Favors heavy nodes B D

C

E

A B D

C

E

A

Captured Mass Metric
For node set S: (S)⇡

PageRank Approximation

6

Looking for k “heavy nodes”
Do not need full PageRank vector

Random Walk Sampling
Favors heavy nodes B D

C

E

A

Return set {E,D}

Captured mass = ({E,D})

k=2Captured Mass Metric
For node set S: (S)⇡

⇡

Platform

Graph Engines
❖ Engine splits graph across cluster

❖ Vertex program describes logic

8

GAS abstraction
B D

C

E

A

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

B D

C

E

A

Graph Engines
❖ Engine splits graph across cluster

❖ Vertex program describes logic

8

1. Gather
GAS abstraction

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

Graph Engines
❖ Engine splits graph across cluster

❖ Vertex program describes logic

8

1. Gather

2. Apply

GAS abstraction
B D

C

E

A

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

B D

C

E

A

Graph Engines
❖ Engine splits graph across cluster

❖ Vertex program describes logic

8

1. Gather

2. Apply

3. Scatter

GAS abstraction

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

B D

C

E

A

Edge Cuts

❖ Assign vertices to machines

❖ Cross-machine edges require
network communication

❖ Pregel, GraphLab 1.0

❖ High-degree nodes generate
large volume of traffic

❖ Computational load imbalance

9

C

D

E

BA

Edge Cuts

❖ Assign vertices to machines

❖ Cross-machine edges require
network communication

❖ Pregel, GraphLab 1.0

❖ High-degree nodes generate
large volume of traffic

❖ Computational load imbalance

9

C

D

E
BA

Machine 2Machine 1

Machine 3

E

DBA B

C

DB

Vertex Cuts

10

❖ Assign edges to machines

❖ High-degree nodes replicated

❖ One replica designated master

❖ Need for synchronization
1. Gather
2. Apply [on master]
3. Synchronize mirrors
4. Scatter

❖ GraphLab 2.0 - PowerGraph

❖ Balanced - Network still bottleneck

E

DB

A B

C

DB

Vertex Cuts

10

Machine 2Machine 1

Machine 3

❖ Assign edges to machines

❖ High-degree nodes replicated

❖ One replica designated master

❖ Need for synchronization
1. Gather
2. Apply [on master]
3. Synchronize mirrors
4. Scatter

❖ GraphLab 2.0 - PowerGraph

❖ Balanced - Network still bottleneck

E

DB

A B

C

DB

Vertex Cuts

10

Machine 2Machine 1

Machine 3

❖ Assign edges to machines

❖ High-degree nodes replicated

❖ One replica designated master

❖ Need for synchronization
1. Gather
2. Apply [on master]
3. Synchronize mirrors
4. Scatter

❖ GraphLab 2.0 - PowerGraph

❖ Balanced - Network still bottleneck

Random Walks on GraphLab

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

11

Master node decides step

Decision synced to all mirrors

Only machine M needs it

Unnecessary network traffic

Average replication factor ~8

Random Walks on GraphLab

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

ZZZ

11

Master node decides step

Decision synced to all mirrors

Only machine M needs it

Unnecessary network traffic

Average replication factor ~8

Random Walks on GraphLab

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

Z

Z

Z

11

Master node decides step

Decision synced to all mirrors

Only machine M needs it

Unnecessary network traffic

Average replication factor ~8

Objective

Idea Only synchronize the mirror that will receive the frog
Doable, but requires

1. Serious engine hacking

2. Exposing an ugly/complicated API to programmer

Faster PageRank approximation on GraphLab

Simpler Pick mirrors to synchronize at random!

12

Synchronize independently with probability pS

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS

Ber(pS)

Ber(pS)

Ber(pS)

N

pT

Release N frogs in parallel

Vertex Program

13

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS

Ber(pS)

Ber(pS)

Ber(pS)

pT

Release N frogs in parallel

Vertex Program K

13

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS
Ber(pS)

Ber(pS)

pT

Release N frogs in parallel

Vertex Program K

13

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS

Ber(pS)

pT

Release N frogs in parallel

Vertex Program K

13

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS

pT

Release N frogs in parallel

Vertex Program K

13

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS

pT

Release N frogs in parallel

Vertex Program

K/2

K/2

13

1.Each frog dies w.p. (gives sample)  
 Assume K frogs survive

2.For every mirror, draw bridge w.p.

3.Spread frogs evenly among  
synchronized mirrors.

FrogWild!

Machine 1

A B

Machine 2

B C

Machine 3

B D

Machine M

B Z

pS

pT

Release N frogs in parallel

Vertex Program

K/2

K/2

13

Bridges introduce dependencies!

Contributions

14

1.Algorithm for approximate PageRank
2.Modification of GraphLab  

Exposes very simple API extension (pS).  
Allows for randomized synchronization.

3.Speedup of 7-10x
4.Theoretical guarantees for solution

despite introduced dependencies

Theoretical Guarantee

15

⇡(S) � OPT� 2✏

p\(t)
1

n
+

tk⇡k1
pT

,

probability two Frogs meet at first t steps

Mass Captured by top-k set, S, of estimate

where ✏ <
p
k�t

2 +

s
k

�

1

N
+ (1� p2S)p\(t)

�

w.p. 1� �

 from N frogs after t steps

Experiments

Experimental Results

17

Experimental Results

18

Experimental Results

19

Thank you!

References
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the
web.

Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data. ACM, 2010.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., & Hellerstein, J. M. (2010). Graphlab: A new
framework for parallel machine learning. arXiv preprint arXiv:1006.4990.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., & Guestrin, C. (2012, October). PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs. In OSDI (Vol. 12, No. 1, p. 2).

Nguyen, D., Lenharth, A., & Pingali, K. (2013, November). A lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (pp. 456-471). ACM.

Avery, C. (2011). Giraph: Large-scale graph processing infrastruction on Hadoop. Proceedings of Hadoop
Summit. Santa Clara, USA:[sn].

Xin, R. S., Gonzalez, J. E., Franklin, M. J., & Stoica, I. (2013, June). Graphx: A resilient distributed graph system
on spark. In First International Workshop on Graph Data Management Experiences and Systems (p. 2). ACM.

Backup Slides

PageRank [Page et al., 1999]

23

B D

C

E

A

PageRank [Page et al., 1999]

23

B D

C

E

A
1

1

1/3

1/3

1/3

Normalized Adjacency Matrix
Pij =

1

d
out

(j)
, (j, i) 2 G

PageRank [Page et al., 1999]

23

B D

C

E

A

Normalized Adjacency Matrix
Pij =

1

d
out

(j)
, (j, i) 2 G

Augmented Matrix
Qij = (1� pT)Pij +

pT
n

pT 2 [0, 1]

PageRank [Page et al., 1999]

23

B D

C

E

A

PageRank Vector ⇡ = Q⇡

Normalized Adjacency Matrix
Pij =

1

d
out

(j)
, (j, i) 2 G

Augmented Matrix
Qij = (1� pT)Pij +

pT
n

pT 2 [0, 1]

PageRank [Page et al., 1999]

23

B D

C

E

A

PageRank Vector ⇡ = Q⇡

Normalized Adjacency Matrix
Pij =

1

d
out

(j)
, (j, i) 2 G

Augmented Matrix
Qij = (1� pT)Pij +

pT
n

pT 2 [0, 1]

Power Method Qtp0 ! ⇡

Here be dragons.

Backup

B D

C

E

A

B D

C

E

A

B D

C

E

A

B D

C

E

A

B D

C

E

A

B D

C

E

A

Backup

B

C

E

A DB D

C

E

A

