

Fast PageRank Approximations on Graph Engines Ioannis Mitliagkas Michael Borokhovich Alex Dimakis Constantine Caramanis

Web Ranking

Given web graph Find "important" pages

Web Ranking

Given web graph Find "important" pages Rank Based on In-degree Classic Approach

Web Ranking

Page Importance Described by distribution π

Page Importance Described by distribution π

Recursive Definition

Important pages are pointed to by

- important pages are pointed to by
 - * important pages are pointed to by...

Page Importance Described by distribution π

Recursive Definition

Important pages are pointed to by

- important pages are pointed to by
 - * important pages are pointed to by...

Robust

to manipulation by spammer networks

E

- Start: Gallon of water distributed evenly
- Every Iteration Each vertex spreads water evenly to successors Redistribute evenly a fraction, $p_T = 0.15$, of all water

Repeat until convergence

Power Iteration employed usually

Frog walks randomly on graph Next vertex chosen uniformly at random

Frog walks randomly on graph Next vertex chosen uniformly at random

Frog walks randomly on graph Next vertex chosen uniformly at random

Frog walks randomly on graph Next vertex chosen uniformly at random

TeleportationEvery step: teleport w.p. p_T

Frog walks randomly on graph Next vertex chosen uniformly at random

TeleportationEvery step: teleport w.p. p_T

Frog walks randomly on graph Next vertex chosen uniformly at random

TeleportationEvery step: teleport w.p. p_T

Sampling after t steps Frog location gives sample from π

Frog walks randomly on graph Next vertex chosen uniformly at random

TeleportationEvery step: teleport w.p. p_T

Sampling after t steps Frog location gives sample from π

PageRank VectorMany frogs, estimate vector π

PageRank Approximation

Looking for k "heavy nodes"

Do not need full PageRank vector

Random Walk Sampling

Favors heavy nodes

Captured Mass Metric For node set S: $\pi(S)$

PageRank Approximation

Looking for k "heavy nodes"

Do not need full PageRank vector

Random Walk Sampling

Favors heavy nodes

Captured Mass Metric For node set S: $\pi(S)$

Platform

- * Engine splits graph across cluster
- * Vertex program describes logic

GAS abstraction

- * Engine splits graph across cluster
- * Vertex program describes logic

GAS abstraction

1. Gather

- * Engine splits graph across cluster
- * Vertex program describes logic

GAS abstraction

- 1. Gather
- 2. Apply

- * Engine splits graph across cluster
- * Vertex program describes logic

GAS abstraction

- 1. Gather
- 2. Apply
- 3. Scatter

Edge Cuts

- Assign vertices to machines
- Cross-machine edges require network communication
- Pregel, GraphLab 1.0
- High-degree nodes generate
 large volume of traffic
- Computational load imbalance

Edge Cuts

- Assign vertices to machines
- Cross-machine edges require network communication
- * Pregel, GraphLab 1.0
- High-degree nodes generate large volume of traffic
- Computational load imbalance

Vertex Cuts

- Assign edges to machines
- High-degree nodes replicated
- * One replica designated master
- Need for synchronization
 - 1. Gather
 - 2. Apply [on master]
 - 3. Synchronize mirrors
 - 4. Scatter
- * GraphLab 2.0 PowerGraph
- Balanced Network still bottleneck

Vertex Cuts

- Assign edges to machines
- High-degree nodes replicated
- * One replica designated master
- Need for synchronization
 - 1. Gather
 - 2. Apply [on master]
 - 3. Synchronize mirrors
 - 4. Scatter
- * GraphLab 2.0 PowerGraph
- * Balanced Network still bottleneck

Vertex Cuts

- Assign edges to machines
- High-degree nodes replicated
- * One replica designated master
- * Need for synchronization
 - 1. Gather
 - 2. Apply [on master]
 - 3. Synchronize mirrors
 - 4. Scatter
- * GraphLab 2.0 PowerGraph
- Balanced Network still bottleneck

Random Walks on GraphLab

Master node decides step

Decision synced to all mirrors

Only machine M needs it

Unnecessary network traffic

Average replication factor ~8

Random Walks on GraphLab

Master node decides step

Decision synced to all mirrors

Only machine M needs it

Unnecessary network traffic

Average replication factor ~8

Random Walks on GraphLab

Master node decides step

Decision synced to all mirrors

Only machine M needs it

Unnecessary network traffic

Average replication factor ~8

Objective

Faster PageRank approximation on GraphLab

Idea Only synchronize the mirror that will receive the frog Doable, but requires

- 1. Serious engine hacking
- 2. Exposing an ugly/complicated API to programmer

SimplerPick mirrors to synchronize at random!Synchronize independently with probability p_S

Release N frogs in parallel

Vertex Program

1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive

2.For every mirror, draw bridge w.p. p_S

3.Spread frogs evenly among synchronized mirrors.

- Release N frogs in parallel
- Vertex Program
- 1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive
- 2.For every mirror, draw bridge w.p. p_S
- 3.Spread frogs evenly among synchronized mirrors.

- Release N frogs in parallel
- Vertex Program
- 1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive
- 2.For every mirror, draw bridge w.p. p_S
- 3.Spread frogs evenly among synchronized mirrors.

- Release N frogs in parallel
- Vertex Program
- 1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive
- 2.For every mirror, draw bridge w.p. p_S
- 3.Spread frogs evenly among synchronized mirrors.

- Release N frogs in parallel
- Vertex Program
- 1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive
- 2.For every mirror, draw bridge w.p. p_S
- 3.Spread frogs evenly among synchronized mirrors.

- Release N frogs in parallel
- Vertex Program
- 1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive
- 2.For every mirror, draw bridge w.p. p_S
- 3.Spread frogs evenly among synchronized mirrors.

Release N frogs in parallel

Vertex Program

1.Each frog dies w.p. p_T (gives sample) Assume K frogs survive

2.For every mirror, draw bridge w.p. p_S

3.Spread frogs evenly among synchronized mirrors.

Bridges introduce dependencies!

Contributions

- Algorithm for approximate PageRank
 Modification of GraphLab
 Exposes very simple API extension (p_S).
 Allows for randomized synchronization.
- 3.Speedup of 7-10x
- 4. Theoretical guarantees for solution despite introduced dependencies

Theoretical Guarantee

Mass Captured by top-k set, S, of estimate from N frogs after t steps

$$\pi(S) \ge \operatorname{OPT} - 2\epsilon \quad \text{w.p. } 1 - \delta$$
here $\epsilon < \sqrt{k}\lambda_2^t + \sqrt{\frac{k}{\delta} \left[\frac{1}{N} + (1 - p_S^2)p_{\cap}(t)\right]}$

probability two Frogs meet at first t steps

W

$$p_{\cap}(t) \le \frac{1}{n} + \frac{t \|\pi\|_{\infty}}{p_T},$$

Experimental Results

Experimental Results

Experimental Results

References

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web.

Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM, 2010.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., & Hellerstein, J. M. (2010). Graphlab: A new framework for parallel machine learning. arXiv preprint arXiv:1006.4990.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., & Guestrin, C. (2012, October). PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI (Vol. 12, No. 1, p. 2).

Nguyen, D., Lenharth, A., & Pingali, K. (2013, November). A lightweight infrastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (pp. 456-471). ACM.

Avery, C. (2011). Giraph: Large-scale graph processing infrastruction on Hadoop. Proceedings of Hadoop Summit. Santa Clara, USA:[sn].

Xin, R. S., Gonzalez, J. E., Franklin, M. J., & Stoica, I. (2013, June). Graphx: A resilient distributed graph system on spark. In First International Workshop on Graph Data Management Experiences and Systems (p. 2). ACM.

Backup Slides

Normalized Adjacency Matrix $P_{ij} = \frac{1}{d_{out}(j)}, \quad (j,i) \in G$

Normalized Adjacency Matrix $P_{ij} = \frac{1}{d_{out}(j)}, \quad (j,i) \in G$

Augmented Matrix $p_T \in [0, 1]$ $Q_{ij} = (1 - p_T)P_{ij} + \frac{p_T}{n}$

Normalized Adjacency Matrix $P_{ij} = \frac{1}{d_{out}(j)}, \quad (j,i) \in G$

Augmented Matrix $p_T \in [0, 1]$ $Q_{ij} = (1 - p_T)P_{ij} + \frac{p_T}{n}$

PageRank Vector $\pi = Q\pi$

Normalized Adjacency Matrix $P_{ij} = \frac{1}{d_{out}(j)}, \quad (j,i) \in G$

Augmented Matrix $p_T \in [0,1]$ $Q_{ij} = (1 - p_T)P_{ij} + \frac{p_T}{n}$

PageRank Vector $\pi = Q\pi$

Power Method $Q^t p^0 \to \pi$

Here be dragons.

Backup

