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PageRank - Continuous Interpretation

Start: Gallon of water distributed evenly

Every lteration

Kach vertex spreads water evenly to successors

Redistribute evenly ( ,\> N

a fraction, pr = 0.15, of all water

Rﬁpf‘ﬁt until convergence 7-‘-

Power Iteration employed usually
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Frog walks randomly on graph

Next vertex chosen uniformly at random

Teleportation
Every step: teleport w.p. pT

Samphng alter t steps
Frog location gives sample from 7

PageRank Vector

Many frogs, estimate vector 7
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Do not need full PageRank vector

Random Walk Sampling

Favors heavy nodes ) -

Captured Mass Metric |,

For node set S: 71(S) Return set {E,D)

Captured mass =71({E,D})






Graph Engines

* Engine splits graph across cluster

* Vertex program describes logic
GAS abstraction
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Other approaches:

Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]
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Graph Engines

* Engine splits graph across cluster

* Vertex program describes logic

GAS abstraction
- GCather

2. Apply
3. Scatter

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]
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Edge Cuts
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Vertex Cuts

* Assign edges to machines
* High-degree nodes replicated

* One replica designated master

* Need for synchronization
1. Gather
2. Apply [on master]
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3. Synchronize mirrors
4. Scatter
* GraphLab 2.0 - PowerGraph

+ Balanced - Network still bottleneck
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Random Walks on Graphl.ab

Master node decides step
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Average replication factor ~8
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Objective

Faster PageRank approximation on GraphLab

Idea Only synchronize the mirror that will receive the frog

Doable, but requires

1. Serious engine hacking

2. Exposing an ugly / complicated API to programmer

SlIIlpl@I‘ Pick mirrors to synchronize at random!
Synchronize independently with probability pg
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FrogWild!

Machine 2
Release N frogs in parallel G

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.P s

3.Spread frogs evenly among
synchronized mirrors.

Bridges introduce dependencies!
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Contributions

1. Algorithm for approximate PageRank

2.Modification of GraphLab
Exposes very simple API extension (ps).
Allows for randomized synchronization.

3.Speedup of 7-10x

4. Theoretical guarantees for solution
despite introduced dependencies
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Theoretical Guarantee

Mass Captured by top-k set, S, of estimate
rom N frogs alter t steps

W(S) 2 OPT — 2e w.p. 1 —0

L1 '
where e<\/EA§+\/5 ~ (1 —pg)pn(t)

probability two Frogs meet at first t steps

ool < e tHwIIoo’
n pT
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Here be dragons.









