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Every Iteration 
Each vertex spreads water evenly to successors

Redistribute evenly 
a fraction, pT = 0.15, of all water

⇡
Power Iteration employed usually
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Teleportation
Every step: teleport w.p. pT

Sampling after t steps
Frog location gives sample from  ⇡

PageRank Vector
Many frogs, estimate vector ⇡

Frog walks randomly on graph
Next vertex chosen uniformly at random
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PageRank Approximation

6

Looking for k “heavy nodes”
Do not need full PageRank vector

Random Walk Sampling
Favors heavy nodes B D

C

E

A

Return set {E,D}

Captured mass =   ({E,D})

k=2Captured Mass Metric
For node set S:    (S)⇡
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1. Gather

2. Apply
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GAS abstraction

Other approaches:
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Objective

Idea Only synchronize the mirror that will receive the frog
Doable, but requires

1. Serious engine hacking

2. Exposing an ugly/complicated API to programmer

Faster PageRank approximation on GraphLab

Simpler Pick mirrors to synchronize at random!

12

Synchronize independently with probability pS
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Contributions

14

1.Algorithm for approximate PageRank
2.Modification of GraphLab  

Exposes very simple API extension (pS).  
Allows for randomized synchronization.

3.Speedup of 7-10x
4.Theoretical guarantees for solution 

despite introduced dependencies 
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Thank you!
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