A‘A‘A\fﬁ&x

FrogWild!

Fast PageRank Approximations
on Graph Engines

loannis Mitliagkas
Michael Borokhovich

Alex Dimakis
Constantine Caramanis

Web Ranking

Given web graph
Find “important™ pages

>

Web Ranking

Given web graph
Find “important™ pages

Rank Based on In-degree

Classic Approach °

>

Web Ranking

Given web graph
Find “important™ pages

Rank Based on In-degree

Classic Approach

Susceptible

to manipulation by spammer networks

2

Pag eRank [Page etal., 1999]

Page Importance
Described by distribution 7

Pag eRank [Page etal., 1999]

Page Importance
Described by distribution 7

Recursive Definition

Important pages are pointed to by

* important pages are pointed to by °

* important pages are pointed to by...

T

Pag eRank [Page etal., 1999]

Page Importance
Described by distribution 7

Recursive Definition

Important pages are pointed to by

* important pages are pointed to by °

* important pages are pointed to by...

Robust n

to manipulation by spammer networks

2

PageRank - Continuous Interpretation

Start: Gallon of water distributed evenly

PageRank - Continuous Interpretation

Start: Gallon of water distributed evenly

Every lteraton

Kach vertex spreads water evenly to successors

PageRank - Continuous Interpretation

Start: Gallon of water distributed evenly

Every lteraton

Kach vertex spreads water evenly to successors

PageRank - Continuous Interpretation

Start: Gallon of water distributed evenly

Every lteraton

Kach vertex spreads water evenly to successors

Redistribute evenly (,\> N

a fraction, pr = 0.15, of all water

PageRank - Continuous Interpretation

Start: Gallon of water distributed evenly

Every lteration

Kach vertex spreads water evenly to successors

Redistribute evenly (,\> N

a fraction, pr = 0.15, of all water

Rﬁpf‘ﬁt until convergence 7-‘-

Power Iteration employed usually

4

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Teleportation
Every step: teleport w.p. pT

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Teleportation
Every step: teleport w.p. pT

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Teleportation
Every step: teleport w.p. pT

Samphng alter t steps
Frog location gives sample from 7

Discrete Interpretation

Frog walks randomly on graph

Next vertex chosen uniformly at random

Teleportation
Every step: teleport w.p. pT

Samphng alter t steps
Frog location gives sample from 7

PageRank Vector

Many frogs, estimate vector 7

5

PageRank Approximation
Looking for k “heavy nodes™

Do not need full PageRank vector

Random Walk Sampling

Favors heavy nodes °

Captured Mass Metric

For node set S: 7(S)

PageRank Approximation
Looking for k “heavy nodes™

Do not need full PageRank vector

Random Walk Sampling

Favors heavy nodes) -

Captured Mass Metric |,

For node set S: 71(S) Return set {E,D)

Captured mass =71({E,D})

Graph Engines

* Engine splits graph across cluster

* Vertex program describes logic
GAS abstraction
)
C
Other approaches:

Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

8

Graph Engines

* Engine splits graph across cluster

* Vertex program describes logic

GAS abstraction
- GCather

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

8

Graph Engines

* Engine splits graph across cluster

* Vertex program describes logic
GAS abstraction
1. Gather A @
2. Apply —

c
Other approaches:

Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

8

Graph Engines

* Engine splits graph across cluster

* Vertex program describes logic

GAS abstraction
- GCather

2. Apply
3. Scatter

Other approaches:
Giraph [Avery, 2011], Galois [Nguyen et al., 2013], GraphX [Xin et al., 2013]

8

Edge Cuts

“ Assign vertices to machines

* Cross-machine edges require
network communication

* Pregel, GraphLab 1.0

* High-degree nodes generate
large volume of traffic

* Computational load imbalance

G»

* Computational load imbalance

Edge Cuts

“ Assign vertices to machines | °

* Cross-machine edges requirej

network communication
“ Pregel, GraphLab 1.0

* High-degree nodes generate
large volume of traffic

Vertex Cuts

* Assign edges to machines
* High-degree nodes replicated

* One replica designated master

* Need for synchronization
1. Gather
2. Apply [on master]

°»

3. Synchronize mirrors
4. Scatter
* GraphLab 2.0 - PowerGraph

+ Balanced - Network still bottleneck

10

+ Balanced - Network still bottleneck

Vertex Cuts

* Assign edges to machines

& High—degree nodes replicated

* One replica designated master f

* Need for synchronization
1. Gather
2. Apply [on master]

3. Synchronize mirrors
4. Scatter
* GraphLab 2.0 - PowerGraph

N " Machine3

Vertex Cuts

E

* Assign edges to machines

& High—degree nodes replicated

* One replica designated master f

* Need for synchronization
1. Gather
2. Apply [on master]

3. Synchronize mirrors
4. Scatter
* GraphLab 2.0 - PowerGraph

+ Balanced - Network still bottleneck C

N " Machine3

Random Walks on Graphl.ab

Master node decides step

Decision synced to all mirrors -

Only machine M needs it

Unnecessary network tratfic

Average replication factor ~8

11

Random Walks on Graphl.ab

Master node decides step

Decision synced to all mirrors -

Only machine M needs it

Unnecessary network tratfic

Average replication factor ~8

11

Random Walks on Graphl.ab

Master node decides step

Decision synced to all mirrors -

Only machine M needs it

Unnecessary network tratfic

Average replication factor ~8

11

Objective

Faster PageRank approximation on GraphLab

Idea Only synchronize the mirror that will receive the frog

Doable, but requires

1. Serious engine hacking

2. Exposing an ugly / complicated API to programmer

SlIIlpl@I‘ Pick mirrors to synchronize at random!
Synchronize independently with probability pg

12

FrogWild!

A
S0

: g ~Machine2
Release N frogs in parallel & /

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.Pg

3.Spread frogs evenly among
synchronized mirrors.

155

FrogWild!

Machine 2
Release N frogs in parallel S

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.Pg

3.Spread frogs evenly among
synchronized mirrors.

155

FrogWild!

Machine 2
Release N frogs in parallel S

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.Pg

3.Spread frogs evenly among
synchronized mirrors.

155

FrogWild!

Machine 2
Release N frogs in parallel S

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.Pg

3.Spread frogs evenly among
synchronized mirrors.

155

FrogWild!

Machine 2
Release N frogs in parallel B

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.Pg

3.Spread frogs evenly among
synchronized mirrors.

155

FrogWild!

Release N frogs in parallel

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.P g

3.Spread frogs evenly among
synchronized mirrors.

155

FrogWild!

Machine 2
Release N frogs in parallel G

Vertex Program

1.Each frog dies w.p. D7 (gives sample) :
Assume K frogs survive ?

2 .For every mirror, draw bridge w.p.P s

3.Spread frogs evenly among
synchronized mirrors.

Bridges introduce dependencies!

155

Contributions

1. Algorithm for approximate PageRank

2.Modification of GraphLab
Exposes very simple API extension (ps).
Allows for randomized synchronization.

3.Speedup of 7-10x

4. Theoretical guarantees for solution
despite introduced dependencies

14

Theoretical Guarantee

Mass Captured by top-k set, S, of estimate
rom N frogs alter t steps

W(S) 2 OPT — 2e w.p. 1 —0

L1 '
where e<\/EA§+\/5 ~ (1 —pg)pn(t)

probability two Frogs meet at first t steps

ool < e tHwIIoo’
n pT

15

Experiments

Experimental Results

Twitter, AWS, 24 nodes, 800K rw

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

A
i]

() GraphLab PR iters=(1,2,exact)
¢) FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

TN

N/

() FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

10°

10"

102

1.00F

| | | |
Q) o Q) o
o S @ o
o o o o

(001=4) painjded sse|\ - Aoeanaay

0.75}

10°

Total time (s)

17

(@)

&)

Time per iteration (s)
w N

N

Experimental Results

Twitter, AWS, 800K rw, 4 iters

=

000
oo

000
oo

000
oo

cod
000

ood
CRCNC)

GraphLab PR exact
£ FrogWild, Ps=1
FrogWild, Ps=0.7
=3 FrogWild, Ps=0.4
FrogWild, Ps=0.1

ocod
o 0 o
ood
00

12 nodes

16 nodes

20 nodes

18

24 nodes

Total time (s)

RN
o
N

—
o_\

Experimental Results

Twitter, AWS, 800K rw, 4 iters

GraphLab PR exact
E=1] GraphlLab PR 2 ites ||
GraphLab PR 1 iters|]
=3 FrogWild, Ps=1 '
FrogWild, Ps=0.1

Z

12 Or;odes 16°r°10des 20 Hodes 24 or;odes

19

References

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the
web.

Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data. ACM, 2010.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., & Hellerstein, J. M. (2010). Graphlab: A new
framework for parallel machine learning. arXiv preprint arXiv:1006.4990.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., & Guestrin, C. (2012, October). PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs. In OSDI (Vol. 12, No. 1, p. 2).

Nguyen, D., Lenharth, A., & Pingali, K. (2013, November). A lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (pp. 456-471). ACM.

Avery, C. (2011). Giraph: Large-scale graph processing infrastruction on Hadoop. Proceedings of Hadoop
Summit. Santa Clara, USA:[sn].

Xin, R. S., Gonzalez, J. E., Franklin, M. J., & Stoica, L. (2013, June). Graphx: A resilient distributed graph system
on spark. In First International Workshop on Graph Data Management Experiences and Systems (p. 2). ACM.

Backup Slides

PageRank [Page etal., 1999]

25

PageRank [Page etal., 1999]

Normalized Adjacency Matrix

1
2 — — ,1) € G
&=)

25

Pag eRank [Page etal., 1999

Normalized Adjacency Matrix

1
2 — — ,1) € G
J dout(]) (.])

Augmented Matrix prep,

pPT
Qij = (1 — pr)Pij 1 -

25

Pag eRank [Page etal., 1999

Normalized Adjacency Matrix

1
Pij = dout(j)’ (.]7 Z) e (G

Augmented Matrix o<, /
pr : \

Qi; = (1 — pr) P - 24) B ‘ D

PageRank Vector == @n \\i
e

25

PageRank (e ctat. 1999

Normalized Adjacency Matrix

1
Pij = dout(j)’ (.]7 Z) e (G

Augmented Matrix o<, /
pr : \

Qi; = (1 — pr) P - 24) B ‘ D

PageRank Vector == @n \\i
e

Power Method @%° — =

25

Here be dragons.

