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Abstract—This paper presents “strong” limits on the number
of samples required for recovery in the domains of compressive
sensing, matrix-completion and model-selection. In other words,
the paper determines lower-bounds on systems parameters;
where if these lower bounds are not met, then any recovery
algorithm will be guaranteed to be erroneous with high prob-
ability. A common mathematical framework is presented which
is subsequently used to develop such lower bounds for each of
these three domains.

These lower bounds, along with existing achievability argu-
ments is used to argue that a notion of “capacity” analogous to
Shannon capacity of communication systems exists for certain
recovery/learning problems.

I. INTRODUCTION

There is a vast and growing body of literature on recovery
algorithms for a variety of problem settings. In particular, there
are three classes of recovery problems that are of interest to
us in this paper - compressive sensing, matrix completion
and model selection. Our goal is to characterize “strong”
limits on the number of samples needed to enable any form
of recovery for each of the three classes. By strong, we
mean that, without as many samples, recovery is impossible
with high probability. Such strong information-theoretic limits
are important as they provide an understanding of settings
where recovery is impossible, regardless of the computation
complexity of the algorithm or the cleverness of its design.

The first of the three classes we study is compressive
sensing. In this class, a sparse source is to be recovered given
linearly-filtered (and noisy) observations [1]. This class has
been extensively studied in literature, with multiple algorithms
for recovery in existence [1], [2]. The second class is com-
prised of matrix completion problems [6]. Here, randomly
sampled entries of (a possibly low-rank) matrix are available,
and it is desired that the entire matrix be recovered [5], [4],
[3]. The third and final class considered in this paper is the
family of model selection problems. In this class, samples of
random variables from a Markov random field are provided,
and it is desired that the original graphical model be recovered
from them.

As such, these three classes of recovery problems seem
fairly distinct, and algorithms developed to enable efficient re-
covery for each class possess features unique to that particular
class. However, existing tools used to analyze the fundamental

limits of each class are strikingly similar. In particular, weak
bounds have been developed for each class. In [8], [9],
the authors determine weak bounds for compressive sensing
using information-theoretic techniques. Similarly, in [10], the
authors consider the matrix completion problem and again
use information-theoretic techniques to obtain bounds. Finally,
in [13], [11], the model selection problem is studied using
similar tools. In particular, in all three classes of problems, a
common tool used to determine bounds is Fano’s inequality
[14]. Indeed, Fano’s inequality has been used to establish
bounds for multiple applications such as channel capacity and
compression [14] in addition to sparse signal recovery, matrix
completion and model selection.

However, these existing results using Fano’s inequality are
limited in that it typically results in bounds in the weak-sense.
Given n samples and the average probability of error Pe
suffered in the recovery process, Fano’s inequality provides
a lower bound on n in terms of system parameters given that
we desire that Pe → 0 (i.e., that the average probability of
error decay to zero). Fano’s inequality can be written as [14]:

I(T ;Y ) ≥ (1− Pe)|T | −Hb(Pe) (1)

where I(; ) denotes the mutual information function and Hb

the binary entropy function. Further, Y denotes the n (possibly
noisy) samples while the random variable T , which takes
values from a set T denotes the source/model to be recovered.
Note that Fano’s as stated in (1) enables one to relate mutual
information (which in turn determines n) with the cardinality
of the input set for near-perfect sensing/completion/model
selection (when Pe → 0). It is not effective in showing strong
limits. When Pe → 1, the inequality (1) reduces to stating
the fact that mutual information is non-negative. As our goal
is to establish strong lower bounds on n, we adopt a strategy
similar to strong converses for channel capacity in [16] instead
of Fano’s inequality.

Given that n represents the number of samples, the main
results of this paper are:

• For the compressive sensing problem where we desire
to recover an k-sparse p-dimensional vector, we require
that n = Θ(k log p/k) samples for any recovery to be
possible.



• For the matrix completion problem where we wish to
recover a p-dimensional matrix of rank r, n = Θ(rp) is
essential.

• For a Gaussian model selection problem where we desire
to reconstruct a graph from a set of possible graphs T ,
we must have n = Θ(log |T |).

Note that algorithms already exist that operate at or above
(within polylog factors of) each of these three limits. For
compressive sensing, algorithms are known that reconstruct
the vector with n = Θ(k log p/k) samples [7]. A similar result
is true for low-rank matrix completion [12], [6] and model
selection [11]. Thus, whenever an achievable strategy can be
found, these information theoretic bounds are sharp thresholds
at or above which perfect recovery is possible with high
probability and below which any recovery is impossible with
high probability. Such a sharp threshold is highly analogous
to the notion of capacity from information theory. Thus, our
determination of strong limits is a stepping stone to developing
an analog of channel capacity for source or model recovery
problems.

To reiterate, our approach to finding strong bounds is based
on drawing parallels between each recovery problem and
channel capacity analysis in Shannon theory. In many recovery
problem settings, including compressed sensing and matrix
completion, we have a real-valued source S belonging to a
set S of uncountably infinite possibilities. However, channel
capacity analysis typically assumes that the “message” being
communicated belongs to a discrete set. We resolve this
by identifying an underlying discrete set T that is being
recovered. The choice for T could sometimes be intuitive.
For instance, in compressed sensing, it could be the sparsity
pattern of the source. More generally, it could be a quantized
version of the source alphabet to within an (arbitrarily small)
distortion δ > 0.

The remainder of this paper is structured as follows: the next
subsection summarizes the notation used in this paper. Section
II presents a limited background on existing strong bounds in
information theory. Next, Section III discusses strong bounds
for the noisy compressive sensing problem. Similarly, Sections
IV and V develop strong bounds for the matrix completion
and model selection problems respectively. Finally, the paper
concludes with Section VI.

A. Notation

As partly covered in the introduction, X denotes a set and
|X | its cardinality. For any pair of random variables X,Y , x, y
denote instantiations and H(X) (h(X)) denotes the entropy
in case of discrete (and differential entropy when continuous)
in the information-theoretic sense [14]. Similarly I(X;Y )
denotes mutual information.

For matrices M , M t, M−1 and |M | denote its transpose,
inverse and determinant respectively. All vectors are assumed
to be column vectors unless specified otherwise.

II. STRONG BOUNDS: BACKGROUND

Strong limits (in particular, strong-converses) have found
applications in the domains of channel capacity and com-
pression. Wolfowitz [15] developed a strong converse for
the capacity of discrete memoryless channels (DMCs) where
channel capacity is defined as:

C = max
p(x)

I(X;Y ).

In [15], the author shows that if the rate of transmission R
exceeds C, then the average block error probability Pe

n→∞−→ 1.
Since we know that, for all R < C, Pe

n→∞−→ 0, this indicates
that channel capacity C is a sharp threshold below which
arbitrarily reliable communication is possible and above which
communication is almost guaranteed to be erroneous.

In this paper, we do not find achievable strategies (algo-
rithms for recovery) as many sophisticated ones already exist,
and instead focus our energy on strong lower bounds on n for
recovery. Note that our lower bounds on n hold in the scaling
sense and in that way different than channel capacity, which
is a single value.

Next, we present the problem setting and analysis for each
of our three classes of problems.

III. CLASS 1: COMPRESSIVE SENSING

A. Problem Setting

The setting adopted here is similar to that in [8]. Consider
a vector S to be estimated through a noisy linear-filter:

Y = XS +W (2)

where S is a p-dimensional k-sparse vector, X is the n × p
measurement matrix and W i.i.d. Gaussian noise with unit
variance. We impose a measure on the source set S such that
the covariance of S is bounded by a semi-definite matrix Q
and assume all source values are bounded. As before, our aim
is to find a lower bound on n below which recovery of the
source S is not possible with high probability.

B. Analysis

Our analysis of lower bounds will focus on the recovering
the support of the sparse vector S instead of the vector itself.
As the support is a (lossy) function of the vector S, the vector
cannot be recovered if its support cannot be identified with
high probability. Therefore, consider the support set T defined
as:

T , {i : Si 6= 0}

Let T denote a set comprised of all possible support sets.
Note that |T | equals

(
p
k

)
. The support recovery problem

closely resembles a communication channel where the “trans-
mission codebook” consists of T , and the “receiver” observes
Y . Thus, from our understanding of channel capacity from
information theory, the fundamental limit for recovering T
(and thus, S) must (intuitively) be of the form I(S;Y ). As
such I(S;Y ) is not necessarily a computationally tractable



expression. To obtain an explicit characterization, we upper
bound I(S;Y ) as follows:

I(S;Y )
(a)
= h(Y )− h(Y |S)
(b)

≤ 1
2

log(2πe)n|XQXt + I| − h(XS +W |S)

(c)
=

1
2

log(2πe)n|XQXt + I| − h(W )

(d)
=

1
2

log |XQXt + I|

Here, (a) follows from the definition of mutual information.
(b) follows from the fact that Gaussian distributions maximize
differential entropy given a covariance constraint [14]. The
noise W is independent of S, and therefore (c) is obtained.
(d) follows as the noise is given to be Gaussian.

Next, we show that the upper bound on I(S;Y ) in (d) above
is indeed an upper limit on “rate” for the compressive sensing
system:

Ccs ,
1
2

log |XQXt + I| (3)

In other words, if the “rate” R = log
(
p
k

)
exceeds Ccs, then

any form of recovery is impossible with high probability.
Theorem 1: Given the noisy compressive sensing problem

as formulated by (2), the probability of error P (n)
e for any

recovery algorithm can be lower bounded as:

P (n)
e ≥ 1− nAcs

(R− Ccs)2
− 2(R−Ccs)

for a real-valued constant Acs > 0, where Ccs is as defined
by (3) and

R = log
(
p

k

)
In particular, for any α, γ > 0, if

R > Ccs + n0.5+αγ ⇒ Pe
n→∞−→ 1 (4)

A proof of this theorem is provided in the Appendix. In
order to transform this result into a bound in terms of system
parameters, we return to the definition of Ccs in (3). With
some basic matrix manipulations, it is easy to show that Ccs
grows as Θ(n). Therefore, rewriting (4), we get a lower bound
on n required for recovery given by:

n = Θ(k log(p/k))

Note that this bound resembles bounds based on Fano’s
inequality as studied in [8, Theorem 2] and related literature.
As shown in [8], algorithms are known to exist that operate
at or above n = Θ(k log(p/k)). In all cases where algorithms
exist, this scaling behavior in n represents a critical threshold,
below which any recovery (even imperfect) is not possible
with high probability, and above which reliable recovery can
be achieved.

IV. CLASS 2: MATRIX COMPLETION

A. Problem Setting

The matrix completion problem setting follows the model
studied in [12], [6]. S denotes the set of all rank r matrices
S of the form:

S = UV

where U and V are m × r and r ×m full rank matrices.
The sampling strategy Z is comprised of n positions chosen
uniformly at random within an m×m grid. The outcome of
the sampling process is

Y = SZ +W (5)

Here, SZ represents a vector formed by the values obtained
with sampling strategy Z is applied, and W is i.i.d. Gaussian
noise with identity covariance. As in Section III, we impose
a measure on the set S such that the covariance of S is upper
bounded by Q, and assume bounded source values.

The primary question in this setting is to determine a strong
bound on the number of samples n to enable recovery to a
finite set T ⊆ S. The case where T is a strict subset of S
represents (lossy) compression where we wish to construct a
matrix “closest” (given a suitable distortion measure) to the
original matrix S.

B. Analysis

In obtaining a strong bound, it is worthwhile to first intu-
itively understand its connection with the domain of channel
capacity. Here, the matrix T ∈ T to be recovered represents
the “transmission codebook”, and Y is the received vector
from which we must recover T . In this analogy, the sampling
strategy Z is known both to the transmitter and the receiver.
Thus, we might expect the fundamental limit on matrix
completion to closely resemble I(S;Y |Z). Again, to obtain a
computationally tractable bound, we take the following steps:

I(S;Y |Z)
(a)
= h(Y |Z)− h(Y |S,Z) (6)
(b)

≤ 1
2

log(2πe)n|QZ + I| − h(Y |S,Z) (7)

(c)

≤ 1
2

log(2πe)n|QZ + I| − h(W ) (8)

(d)

≤ 1
2

log |QZ + I| (9)

Here, QZ denotes the covariance matrix for sampled values
of S and the reasons behind Equations (a)− (d) are identical
to those in Section III. We define:

Cmr ,
1
2

log |QZ + I| (10)

as the upper limit (“capacity”) of the matrix completion
system. Thus, all rates R = log |T | must be less that Cmr
for recovery, and for any R > C, recovery is impossible with
high probability. This notion is formalized by the following
theorem:



Theorem 2: Given the noisy matrix completion problem as
formulated by (5), the probability of error P (n)

e incurred by
any matrix completion algorithm can be lower bounded as:

P (n)
e ≥ 1− nAmr

(R− Cmr)2
− 2(R−Cmr)

for a real-valued constant Amr > 0, where Cmr is as
defined by (10) and R = log|T |. In particular, for any
α, γ > 0, if

R > Cmr + n0.5+αγ ⇒ Pe
n→∞−→ 1 (11)

Note that Cmr in fact grows as Θ(n) and R = Θ(rm) for
a distortion metric that does not grow with m [10]. Thus, the
strong lower bound on n is:

n = Θ(rm) (12)

V. CLASS 3: GAUSSIAN MODEL SELECTION

A. Problem Setting

The setting we consider is similar to the one studied in [11].
Let T represent a class of graphs from which one represents
the model corresponding to a Gaussian Markov random field
(MRF). For instance, this class could be Gp,d, the set of all
graphs over p vertices with at most a degree d. In this section,
we do not focus on the nature of the set T , but instead
investigate order-wise bounds on n in terms of |T | below
which recovery is not possible with high probability.

B. Analysis

The analogy to communication in this setting is fairly
straightforward. The graphical model T forms the transmission
codebook, and Y represents the received vector from which T
is to be determined. As in the previous sections, we associate
a probability measure with the set T . Again, it is intuitive
that the fundamental bound on rate (defined as the number of
distinguishable graphs) be related to I(T ;Y ). Computationally
tractable expressions for I(T ;Y ) can be obtained, along the
same lines as [11], as:

I(T ;Y ) =
1
2

log |ETQ| − ET log |Q|

where Q is the covariance of the Gaussian MRF for a
particular realization of T . Further simplifications of this and
other ways of expressing I(T ;Y ) for model selection can be
found in [11].

Defining

Cgm ,
1
2

log |ETQ| − ET log |Q|, (13)

we have the following theorem:
Theorem 3: Given the model selection problem as defined

by (13), the probability of error for any selection algorithm
can be lower bounded as:

P (n)
e ≥ 1− nD

(R− Cgm)2
− 2(R−Cgm)

where D is a positive constant and R = log |T |.

The proof of this theorem is in Appendix-B. In general,
evaluating both Cgm and |T | in terms of system parameters
can be non-trivial. [11], multiple bounds are presented for a
Gaussian Markov random field. An analogous approach (but
with different bounds) for binary MRFs can be found in [13].

VI. CONCLUSION

The main goal of this paper is to establish a general
mechanism for finding strong limits for source/model recovery
problems. The general structure for doing so is very similar
to channel capacity analysis:

• Identify a mutual information expression that represents
the information shared between source and samples

• Upper bound this mutual information term to obtain a
computable expression in terms of system parameters

• Use a standardized suite of bounding techniques to show
lower bounds on probability of error.

In all cases where achievable algorithms exist that operate
in the same order, we have the order-wise capacity of the
recovery problem.

VII. APPENDIX

A. Proof of Theorems 1 & 2

Here, we prove both Theorems 1 and 2 using a common
framework based of Gallager’s original strong converse proof
[16]. The general mathematical model of the system for both
cases (compressive sensing and matrix completion) can be
written as

Y n = XSZ +Wn

where W ∼ N (0, I). In the case of compressive sensing
SZ = S and in the case of matrix completion X = I . In
either case, a unitary transformation U exists such that

Ỹ n = UY n = UXSZ + UW = S̃Z + W̃n

where the covariance constraint on S̃Z is diagonal while
the covariance on noise remains an identity. Henceforth, with
a slight abuse of notation, we will assume that Y n = SZ+Wn

where

E[SZStZ ] ≤ diag(λ1, . . . , λm)

for some real valued λi > 0 ∀ i.
Define for given source s ∈ S and sequence zn

I(s;Y n|zn) , EY n|s,zn log
p(Y n|zn, s)
p(Y n|zn)

Note that, in compressive sensing, zn is any constant se-
quence (unrelated to the problem), while in matrix completion,
it represents a realization of the sampling sequence Z.



Next, we have:

I(s;Y n|zn) = EY n|s,zn log
p(Y n|zn, s)
p(Y n|zn)

= EY n|s,zn log
p(Y n|zn, s)
q(Y n|zn)

q(Y n|zn)
p(Y n|zn)

= EY n|s,zn log
p(Y n|zn, s)
q(Y n|zn)

− EY n|s,zn log
p(Y n|zn)
q(Y n|zn)

=
n∑
i=1

EYi|s,zi
log

p(Yi|zi, s)
q(Yi|zi)

− EY n|s,zn log
p(Y n|zn)
q(Y n|zn)

where the introduced q is any measure such that q(Y n|zn) =∏
i q(Yi|zi). Define C ,

∑n
i=1 Ci where

Ci , E log
p(Yi|zi, s)
q(Yi|zi)

,

then

I(S;Y n|Zn) = Es,znI(s;Y n|zn)

= Es,zn

n∑
i=1

EYi|s,zi
log

p(Yi|zi, s)
q(Yi|zi)

− Es,znEY n|s,zn log
p(Y n|zn)
q(Y n|zn)

= Es,zn

n∑
i=1

EYi|s,zi
log

p(Yi|zi, s)
q(Yi|zi)

− EznD(p(Y n|zn)||q(Y n||zn))

≤
n∑
i=1

E log
p(Yi|zi, s)
q(Yi|zi)

= C

as the K-L divergence between any two distributions is always
non-negative. Since the source set S is, in the general case,
infinite and often uncountable, we cannot demand exact recov-
ery. We define a discrete subset of S, called T , over which
we make the recovery decision, and sets Dt that constitute a
partition of S (that is,

⋃
t∈T Dt = S and Dx

⋂
Dy = ∅ for

x, y ∈ T , x 6= y). Now define

B(s, zn) =

[
yn :

n∑
i=1

log
p(yi|zi, s)
q(yi|zi)

>

n∑
i=1

(Ci + ε)

]
,

and consider an arbitrary recovery function g. The average
probability of correct decoding is given by

Pc =
1
|Zn|

∑
zn∈Zn

∑
t∈T

∫
s∈Dt

∫
yn

g(yn,zn)=t

p(yn|s, zn)dynp(s)ds

Due to symmetry, the probability of correct decoding is the
same for all typical sequences zn [14], and so we express it

in terms of a particular sequence zn as:

Pc =
∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t

p(yn|s, zn)dyn p(s)ds

=
∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t
yn /∈B(s,zn)

p(yn|s, zn)dyn p(s)ds

+
∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t
yn∈B(s,zn)

p(yn|s, zn)dyn p(s)ds

We bound the first term as follows:∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t
yn /∈B(s,zn)

p(yn|s, zn)dyn p(s)ds

≤
∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t
yn /∈B(s,zn)

q(yn|zn)2
Pn

i=1(Ci+ε)dyn p(s)ds

≤
∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t

q(yn|zn)2
Pn

i=1(Ci+ε)dyn p(s)ds

≤2
Pn

i=1(Ci+ε)
∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t

q(yn|zn)dyn p(s)ds

≤2
Pn

i=1(Ci+ε)
∑
t∈T

(∫
s∈Dt

p(s)ds
)(∫

yn:g(yn)=t

q(yn)dyn
)

=2
Pn

i=1(Ci+ε)
∑
t∈T

Pr[s ∈ Dt]Pr[g(yn) = t]

≤2
Pn

i=1(Ci+ε) max
t∈T

Pr[s ∈ Dt]

For the second term:∑
t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t
yn∈B(s,zn)

p(yn|s, zn)dynp(s)ds

≤
∑
t∈T

∫
s∈Dt

∫
yn∈B(s,zn)

p(yn|s, zn)dynp(s)ds

≤
∑
t∈T

∫
s∈Dt

Pr(B(s, zn))p(s)ds

≤
∑
t∈T

∫
s∈Dt

Pr

(
n∑
i=1

log
p(Yi|zi, s)
q(Yi|zi)

>

n∑
i=1

(Ci + ε)

)
p(s)ds

≤
∑
t∈T

∫
s∈Dt

Pr

(
n∑
i=1

log
p(Yi|zi, s)
q(Yi|zi)

−
n∑
i=1

Ci > nε

)
p(s)ds

Notice that by definition

E
n∑
i=1

log
p(Yi|zi, s)
q(Yi|zi)

=
n∑
i=1

Ci ,

and by independence

var

(
n∑
i=1

log
p(yi|zi, s)
q(yi|zi)

)
=

n∑
i=1

var
(

log
p(yi|zi, s)
q(yi|zi)

)
.



Taking q(yi|zi) to be zero mean Gaussians with variance
λ̃i + 1, with λ̃i ≤ λi, the variance of individual terms can
be calculated as

var
(

log
p(yi|zi, s)
q(yi|zi)

)
=
λ̃i

2
+ 2s2(zi)

2(λ̃i + 1)2
.

where s(zi) denotes the element of s indexed by zi. Since all
variances and source values are finite, we can define

A = max
i

var
(

log
p(yi|zi, s)
q(yi|zi)

)
.

A straightforward application of the Chebyshev inequality
gives us, for any s,

Pr

(
n∑
i=1

log
p(Yi|zi, s)
q(Yi|zi)

−
n∑
i=1

Ci > nε

)
≤ nA

(nε)2
=

A

nε2
.

Our second term is a convex combination of probabilities like
the one we bounded, so∑

t∈T

∫
s∈Dt

∫
yn:g(yn,zn)=t
yn∈B(s,zn)

p(yn|s, zn)dyn p(s)ds ≤ A

nε2
.

From these two bounds on the terms of Pc we get

Pc ≤
A

nε2
+ 2

Pn
i=1(Ci+ε) max

t∈T
Pr[s ∈ Dt].

For partitions that contain sets of uniform mass this becomes

Pc ≤
A

nε2
+ 2

Pn
i=1(Ci+ε)−log |T |.

B. Proof of Theorem 3

Now, we prove Theorem 3 using the same proof technique
as before. We opted to give this proof separately to make it
cleaner. A total of n samples from the GMRF are available

Y n = Sn

where Si ∼ N (0,Σ). Let Θ = Σ−1 be the inverse covariance
matrix. In the problem of inverse covariance estimation we
want to recover Θ from Y n, and in the problem of model
selection we are only interested in the underlying graph (i.e.
the sparsity pattern of Θ). We treat the latter as a subcase
of the former, since we can partition the space S of all
inverse covariance matrices into sets of matrices with the same
sparsity structure. For now, we consider a general partition of
S consisting of a finite number of sets Dt, with representative
elements t ∈ T .

Define for given inverse covariance matrix θ ∈ S

I(θ;Y n) , EY n|θ log
p(Y n|θ)
p(Y n)

.

Next, we have:

I(θ;Y n) = EY n|θ log
p(Y n|θ)
p(Y n)

= EY n|θ log
p(Y n|θ)
q(Y n)

q(Y n)
p(Y n)

= EY n|θ log
p(Y n|θ)
q(Y n)

− EY n|θ log
p(Y n)
q(Y n)

=
n∑
i=1

EYi|θ log
p(Yi|θ)
q(Yi)

− EY n|θ log
p(Y n)
q(Y n)

where the introduced q is any measure such that q(Y n) =∏
i q(Yi). Define C ,

∑n
i=1 Ci where

Ci , E log
p(Yi|θ)
q(Yi)

,

then

I(Θ;Y n) = EθI(θ;Y n)

= Eθ

(
n∑
i=1

EYi|θ log
p(Yi|θ)
q(Yi)

− EY n|θ log
p(Y n)
q(Y n)

)

=
n∑
i=1

E log
p(Yi|θ)
q(Yi)

− EY n log
p(Y n)
q(Y n)

=
n∑
i=1

E log
p(Yi|θ)
q(Yi)

−D(p(Y n)||q(Y n))

≤
n∑
i=1

E log
p(Yi|θ)
q(Yi)

= C

as the K-L divergence between any two distributions is always
non-negative. Now define

B(θ) =

[
yn :

n∑
i=1

log
p(yi|θ)
q(yi)

>

n∑
i=1

(Ci + ε)

]
,

and consider an arbitrary recovery function g. The probability
of correct recovery is given by

Pc =
∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t

p(yn|θ)dyn p(θ)dθ

=
∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t
yn /∈B(θ)

p(yn|θ)dyn p(θ)dθ

+
∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t
yn∈B(θ)

p(yn|θ)dyn p(θ)dθ



We bound the first term as follows:∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t
yn /∈B(θ)

p(yn|θ)dyn p(θ)dθ

≤
∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t
yn /∈B(θ)

q(yn)2
Pn

i=1(Ci+ε)dyn p(θ)dθ

≤
∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t

q(yn)2
Pn

i=1(Ci+ε)dyn p(θ)dθ

≤2
Pn

i=1(Ci+ε)
∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t

q(yn)dyn p(θ)dθ

≤2
Pn

i=1(Ci+ε)
∑
t∈T

(∫
θ∈Dt

p(θ)dθ
)(∫

yn:g(yn)=t

q(yn)dyn
)

=2
Pn

i=1(Ci+ε)
∑
t∈T

Pr[θ ∈ Dt]Pr[g(yn) = t]

≤2
Pn

i=1(Ci+ε) max
t∈T

Pr[θ ∈ Dt]

For the second term:∑
t∈T

∫
θ∈Dt

∫
yn:g(yn)=t
yn∈B(θ)

p(yn|θ)dynp(θ)dθ

≤
∑
t∈T

∫
θ∈Dt

∫
yn∈B(θ)

p(yn|θ)dynp(θ)dθ

≤
∑
t∈T

∫
θ∈Dt

Pr(B(θ))p(θ)dθ

≤
∑
t∈T

∫
θ∈Dt

Pr

(
n∑
i=1

log
p(Yi|θ)
q(Yi)

>

n∑
i=1

(Ci + ε)

)
p(θ)dθ

≤
∑
t∈T

∫
θ∈Dt

Pr

(
n∑
i=1

log
p(Yi|θ)
q(Yi)

−
n∑
i=1

Ci > nε

)
p(θ)dθ

Notice that by definition

E
n∑
i=1

log
p(Yi|θ)
q(Yi)

=
n∑
i=1

Ci ,

and by independence

var

(
n∑
i=1

log
p(yi|θ)
q(yi)

)
=

n∑
i=1

var
(

log
p(yi|θ)
q(yi)

)
.

The variance of individual terms is bounded and independent
of n provided all elements of covariance matrix θ−1 are finite,
and for q(yi) we also select a distribution with finite variance.
Then, we can define

A = max
i

var
(

log
p(yi|θ)
q(yi)

)
.

Invoking the Chebyshev inequality we get, for any θ,

Pr

(
n∑
i=1

log
p(Yi|θ)
q(Yi)

−
n∑
i=1

Ci > nε

)
≤ nA

(nε)2
=

A

nε2
.

Our second term is a convex combination of probabilities like
the one we bounded, so∑

t∈T

∫
θ∈Dt

∫
yn:g(yn)=t
yn∈B(θ)

p(yn|θ)dyn p(θ)dθ ≤ A

nε2
.

From these two bounds on the terms of Pc we get

Pc ≤
A

nε2
+ 2

Pn
i=1(Ci+ε) max

t∈T
Pr[θ ∈ Dt].

For partitions that contain sets of uniform mass this becomes

Pc ≤
A

nε2
+ 2

Pn
i=1(Ci+ε)−log |T |.
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