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1 Summary
In this lecture we will discuss the expressivity of neural networks and introduce the universal approximation theorem.
Informally, the expressivity of a model describes the class of functions a model can approximate. We will introduce the
perceptron and show that it cannot model an exclusive or (XOR) of two binary variables. We will then introduce the
multi-layer perceptron (the famous MLP), and prove in Section 3 that it is capable of approximating any continuous
function arbitrarily well. In Section 4 we will conclude with two additional results: first, that a width-bounded neural
network with ReLU non-linearities can approximate a continuous function f : Rn → R arbitrarily well, and second
that there is a class of function for which networks with 2 layers and an exponential number of weights (2k) will have
significant error and that a network with 2k layers can fit exactly.

2 Introduction

2.1 Expressivity of the perceptron
How expressive is a neural network? Let’s start with the simplest neural network, the perceptron. It is a neural network
with a single unit, having an activation function σ. Often, we refer to the perceptron as an artificial “neuron”. Here,
both the input x and the weights w are a vector of dimension 1× n.
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Figure 1: The Perceptron is a fundamental component of many modern neural network architectures. We often refer
to these as neurons. It has a single hidden-unit which is connected to some inputs x. The perceptron computes the dot
product of a weight vector w with the input x, optionally adds a bias term, then passes the result through a non-linearity.

The perceptron can model a function of this form: σ(
∑n
i wixi + b) = σ(w>x + b). Often, we select the non-linear

function σ to be one of the following:

sigmoid =
1

1 + e−x
tanh =

e2x − 1

e2x + 1
ReLU = max(0, x)

Notably, the perceptron is a linear classifier, and as such it famously cannot accurately classify XOR [9]. More pre-
cisely, given two binary variables x1 and x2, the XOR function returns 1 when exactly one of these binary variables
is equal to 1, otherwise it returns 0. After selecting a reasonable loss function such as Mean-Squared Error, and min-
imizing the loss of our model with respect to the weights w1 and w2 and bias b in our perceptron, we obtain a model
which incorrectly classifies at least half of the points. It cannot fit the training data! We show the in Figure 2 and refer
interested readers to the Chapter 6 of the Deep Learning book for a more detailed analysis [4].
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Figure 2: The XOR function is perhaps the simplest non-linear function. Here, we show that the transformation it
applies to x1 and x2 cannot be modelled by a perceptron. In other words, we cannot train a perceptron to classify this
data because it is not linearly separable and the perceptron is only able to express linear functions.

2.2 The Multi-Layer Perceptron
The reading in Understanding Machine Learning (UML) [10] introduces the Multi-Layer Perceptron (MLP) and dis-
cusses its expressivity. Here, we will provide a brief and lossy summary. Figure 3 shows a very small Multi-Layer
Perceptron (MLP) which can correctly classify XOR. As you can see, it is composed of 3 perceptrons, 2 in the hidden
layer and 1 in the output layer.

Figure 3: A Multi-Layer Perceptron with 2 hidden units and an output layer. This model can learn to classify XOR.

The MLP is a feedforward neural network. Typically, the architecture of a neural network is fixed (i.e., we select
the number of neurons, how they are connected, their non-linear activation functions, and their weight initialization)
before training. The feedforward network architecture is formalized in [10] as a directed acyclic graph G = (V,E),
with a weight function over the edges, w : E → R. Nodes on the graph correspond to neurons and σ is some
non-linearity (e.g., the sign function, threshold function, some sigmoidal function, ReLU).

The MLP architecture (when the number of units in the hidden layer is permitted to grow) is a universal approxima-
tor. In Section 3 we will discuss the classic result from Cybenko in ‘89 [2] that any neural network with sigmoidal
activation (i.e., 1 as x→ +∞ and 0 as x→ −∞ can approximate any continuous function arbitrarily well. While this
was the first proof of the universal approximation theorem, many more have followed. Some of these do not rely on
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this assumption about the non-linearity, in particular Leshno-Lin-Pinkus-Schocken ‘93 shows the theorem holds iff σ
is not a polynomial [7]. Next, we will show a visual proof of the Universal Approximation Theorem.

3 Universal Approximation Theorem
The universal approximation theorem states that any continuous function f : [0, 1]n −→ [0, 1] can be approximated
arbitrarily well by a Multi-Layer Perceptron with at least 1 hidden layer and a finite number of hidden units.

3.1 Visual proof of Universal Approximation
In this section we will present a good intuition for the universal approximation theorem by making a summary of
this page http://neuralnetworksanddeeplearning.com/chap4.html. (All credit is due to Michael A. Nielsen for all the
pictures in this subsection)

Say we want to approximate a function with 1 input and 1 output like so:

Figure 4: A continuous function

We will first consider a simple MLP with 2 hidden neurons that have a sigmoid activation function, and for now the
output neuron will just be linear.

Step 1 Make a step function with 1 of the neuron.
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Figure 5: For the top neuron, by selecting a large weight, and a bias term as some proportion of that weight, we can
construct and position a step function arbitrarily well.

Let’s focus on the top hidden neuron first, by using a big weight on the top neuron we can approximate the step
function with a sigmoid arbitrarily well, and by adjusting the bias we can place it anywhere. The same argument could
be made for the tanh activation, but not for ReLU. In this toy example, we won’t be interested in changing the weights
of the first layer, they just have to be high enough that we may consider them to be constant. To simplify the plots,
we will report only the position of the step, s, instead of the weight and bias values. s is easily computed as s = − b

w .
With these changes, the plot becomes:

Figure 6: Having selected the top neuron’s weight to be large, we can re-write the weight and bias of the top neuron
as a single variable that describes the position of the step function, s = − b

w

Step 2 We can construct a “bin” by setting the bottom neuron to “step down” at some later x value.

Figure 7: Making a bin with 2 opposite step functions
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As illustrated above, by using the other neuron to make a step function, and setting opposing weights in the second
layer, we can effectively approximate a bin and control its position, size and height. Now you can probably see where
this is going, to make things even clearer, we will just use 1 value for both w1 and −w2, called h, representing the
height of the “bin”.

Figure 8: Making a bin with 2 opposite step functions

Step 3 In this final step, we show that we can approximate a discretized f(x) by combining several “bins” to make a
histogram approximating the function. Illustrated below is a very rough approximation using only 5 bins (10 hidden
units), but we can obviously make it as sharp as we like by adding more bins. Recall that the neuron in the output layer
is linear. If we instead added a sigmoid activation function on the output unit we just have to approximate σ−1 ◦ f
instead of f , which we can do with the same method.

Figure 9: Approximating f with an histogram

Remarks: It is important to remember that although an MLP is a universal approximator, that does not mean that it can
learn any function through gradient descent. Indeed, many important problems are not learnable in practice through
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gradient descent [11], even in the context of i.i.d. examples. There are even fewer guarantees on the performance of
neural networks when applied to data outside the domain seen during training; this is an active area of research [13].
Exercise for the reader: if we wanted to use this technique to approximate an L-Lipschitz function f : R → R on the
interval [0, 1] with an error at most ε at any point, how many bins would we need?

3.2 Cybenko’s Universal Approximation Result
In this subsection we will present Cybenko’s [2] result for Universal Approximation of MLPs with a single hidden
layer and any sigmoidal non-linearity. This was the first result achieved of this kind, and is based on the following
intuition. Artificial neural networks are formed by compositions and superpositions of a single, simple nonlinear
activation function. The output of the network is the value of the function that results from that particular composition
and superposition of non-linearities as activated by the input. First, we define a sigmoidal function σ as:

σ(x)→

{
1 as x→ +∞
0 as x→ −∞

N.B. sigmoidal functions are usually assumed to be monotonic increasing, but this is not necessary for this result.

Theorem 1. Let C([0, 1]n) denote the set of all continous function [0, 1]n → R, let σ be any sigmoidal activation
function then the finite sum of the form f(x) =

∑N
i=1 αiσ(w>i x+ bi) is dense in C([0, 1]n)

Informally, this theorem is saying that for any g ⊂ C([0, 1]n) and any ε > 0, there exists f : x→
∑N
i=1 αiσ(wi

>x+b)
such that |f(x)− g(x)| < ε for all x ⊂ [0, 1]n. So, for any ε you choose, there is a function in this parametric family
that is arbitrarily close to what your desired function. The ε is “hiding” in the statement of density.
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Figure 10: We show the fitting of f(x) to g(x) within a tolerance of ε to illustrate Cybenko’s theorem.

Cybenko’s result relied upon the Kolmogorov-Arnold Representation theorem described in the next section. A similar
result was independently obtained by Hornik[5] and also by Funahashi[3] using different tools. Hornik’s proof relies
on the Stone-Weierstrass Theorem which states that every continuous function defined on a closed interval [a, b] can
be uniformly approximated as closely as desired by a polynomial function.
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3.3 Kolmogorov-Arnold Representation theorem
The Kolmogorov-Arnold representation theorem (or superposition theorem) [6] states that every multivariate continu-
ous function can be represented as a superposition of continuous functions of one variable.
It solved a more general form of Hilbert’s thirteenth problem [1] which was questioning whether a solution to 7th

degree equations could be expressed by a finite sum of two-variable functions.

Theorem 2. Any continuous function f : [0, 1]n −→ R can be written as

f(x) = f(x1, .., .., xn) =

Zn=2n+1∑
q=1

φq

(
n∑
p=1

Ψpq(xp)

)

This implies, among other things, that if we could chose a “bespoke” non-linearity for each unit we can represent any
continuous function exactly with a NN with 1 hidden layer. In practice we don’t care about the ε in the approximation
of Cybenko’s result, so the Kolmogorov-Arnold Representation theorem is more powerful than we need.

4 The expressive power of Deep neural networks
This section contains several results that relate certain classes of problem, neural network architecture choices, and the
number of parameters required to achieve an error on the aforementioned problem.

4.1 Expressivity of MLPs (Understanding Machine Learning Sec. 20)
Recall from Subsection 2.2 that the MLP may be defined as a directed acyclic graph G = (V,E) equipped with a non-
linearity σ. In order to study the expressivity of the feedforward network, Understanding Machine Learning (UML)
[10] discusses which Boolean functions (functions from {±1}n → {±1} can be implemented by the hypothesis class
of feedforward networks HV,E,sign. The non-linearity selected here is the sign function (1 if input is positive, -1 if
input is negative), but the results that follow in this subsection can also be shown for other non-linearities.

Claim 1. ∀n, there exists a graph (V,E) of depth 2, s.t. HV,E,sign contains all functions from {0, 1}n → {0, 1}.

In order to prove this claim, UML [10] constructs a network which can compute any Boolean function. However, this
network might be exponentially large, and in fact they show in Theorem 3 that it is impossible to express all Boolean
functions using a network of polynomial size.

Proof. We construct a graph with |V0| = n + 1, |V1| = 2n + 1, and |V2| = 1. Let E be all possible edges between
adjacent layers. Now, let f : {±1}n → {±1} be some Boolean function. We need to show that we can adjust the
weights so that the network will implement f . Let u1, . . . ,uk be all the vectors in {±1}n on which f outputs 1.
Observe that for every i and every x ∈ {±1}n, if x 6= ui, then 〈x,ui〉 ≤ n− 2 and if x = ui then 〈x,ui〉 = n.

It follows that the function gi(x) = sign(〈x,ui〉 − n + 1) equals 1 if and only if x = ui. We can adapt the weights
between V0 and V1 so that for every i ∈ [k], the neuron v1,i implements the function gi(x). Finally, we observe that
f(x) is the disjunction of the functions gi(x) and can therefore be written as

f(x) = sign
( k∑
i=1

gi(x) + k − 1

)
This defines a weight setting for a depth-2 network to compute an arbitrary Boolean function, concluding our proof.

Theorem 3 (Shallow Networks Require Exponential Parameters to Implement Boolean Functions). For every n, let
s(n) be the minimal integer such that there exists a graph (V,E) with |V | = s(n) such that the hypothesis class
HV,E,sign contains all the functions from 0, 1n → 0, 1. Then, s(n) is exponential in n. Similar results hold forHV,E,σ
where σ is the sigmoid function.
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Proof. Suppose that for some (V,E) we have that HV,E,sign contains all functions from {0, 1}n → {0, 1}. It follows
that it can shatter the set of m = 2n vectors in {0, 1}n and hence the VC dimension of HV,E,sign is 2n. On the other
hand, the VC dimension ofHV,E,sign is bounded by O(|E|log(|E|)) ≤ O(|V |3) (shown in Section 20.4 of [10]). This
implies that |V | ≥ Ω(2

n
3 ) which concludes our proof for the case of networks with the sign activation function. The

proof for the sigmoid case is analogous.

So, it is impossible to express all Boolean functions of n bits using a depth-2 network of size polynomial in n. And it’s
possible to fit any continuous function arbitrarily well. What about other classes of problem? Or with other constraints
on the network? We will see this next.

4.2 A view from the width (Lu et al. 2017)
In the previous sections, we focused on the setting of depth-bounded (e.g. depth-2) neural networks. With [8] we’re
going to see some interesting results for width-bounded neural networks instead !

Theorem 4. (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable
function f : Rn → R and any ε > 0, there exists a fully-connected ReLU network A with width dm ≤ n+ 4, such that
the function FA represented by this network satisfies∫

Rn

|f(x)− FA(x)|dx < ε

This theorem states that any continuous function f : Rn → R can be approximated by a deep ReLU network with
width ≤ n+ 4.

Theorem 5. Let n be the input dimension. For any integer k ≥ n + 4 there exists Fα : Rn → R represented by a
relu neural network α with width dm = 2k2 and depth h = 3 such that for any constant b > 0, there exists an ε > 0
and for any function Fβ : Rn → R represented by a ReLu neural network β whose parameters are bounded in [−b, b]
with width dm ≤ k

3
2 and depth h ≤ k + 2 the following inequality holds∫

R

|Fα − Fβ |dx ≥ ε

This theorem states that there are networks such that reducing width requires increasing in the size to compensate,
which is similar to that of depth qualitatively.

4.3 Representation benefits of deep NN (Telgarsky 2015)
In this section, we want to show interesting results from [12], that will allow us to compare the expressivity of wide
networks against deep and recurrent networks, on a specific classification problem. Let n-ap (n-alternating-points) be
the set of n := 2k points uniformly spaced within [0, 1 − 2−k] with alternating labels. We will use different types of
neural network to fit this dataset, and see the number of parameters required to achieve a certain classification error.

Figure 11: The 23-ap [12]
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In the following theorems we will note N (σ,m, l) the set of function given by a feedforward neural network with
activation σ and l layers with at most m nodes. The ReLU activation will be noted σR and the classification errorRz .

Theorem 6. With m ≤ 2(k−3)/(l−1), for any positive integer k, ∃ a collection of n := 2k points S = (xi, yi)
n
i=1

where xi ∈ [0, 1], y ∈ {0, 1} such that

min
f∈N (σR,m,l)

Rz(f) =
1

6
and min

g∈N (σR,2,2k)
Rz(g) = 0

Notably, if we look at the case of 2 layered networks, this tells us that even with 2k−3 units in the hidden layer, the
wide network is going to misclassify 1

6 of the points, whereas a deep network with 2k hidden layers with 2 units each
can achieve 0 classification error. What about a recurrent network?

Let R(σ,m, l; k) denote k iterations of a recurrent neural network, every f ∈ N (σ,m, l, k) can be expressed as some
fixed network g ∈ N (σ,m, l) applied k times:

f(x) = gk(x) = (g ◦ g · · · ◦ g)︸ ︷︷ ︸
k times

(x)

Consequently, R(σ,m, l; k) ⊆ N (σ,m, lk) but the former has O(ml) parameters whereas the latter has O(mlk)
parameters. We can view the latter (N (σ,m, lk)) as an unrolled RNN. Lastly we define the following functions:

Definition 7 (Sawtooth). A function f : R −→ R is t-sawtooth if it is piece-wise linear with t-pieces

We can say for example that σR (ReLU) is a 2-sawtooth function, decision stumps used in boosting are also 2-sawtooth,
and decision trees with t-1 nodes are t-sawtooth.

Theorem 8. Let positive integer k, number of layers l, and number of nodes per layer m be given.
Given a t-sawtooth σ : R→ R and n := 2k points as specified by the n-ap, then

min
f∈N (σ,m,l)

Rz(f) ≥ n− 4(tm)l

3n
and min

g∈R(σR,2,2,k)
Rz(g) = 0

In summary, this means that on the 2k-ap, one needs exponentially (in k) many parameters with a wide network,
linearly many parameters with a deep network and constantly many parameters with a recurrent network.

4.3.1 Analysis

The required reading [12] provides a proof of the lower bound via a counting argument which tracks the number
of times a function within R(σ;m, l) can cross 1

2 . The upper bound is proved via the construction of a network
R(σR; 2, 2) which can be composed with itself k times to exactly fit the n-ap. These bounds together prove Theorems
6 and 8.

While these notes focus on the parameters in the network, the parametric requirement of each architecture is itself
produced by a more fundamental idea: how adding and composing sawtooth functions grows their complexity. In
Lemma 2.3 of [12], Telgarsky claims:

Lemma 1. Let f : R→ R and g : R→ R be respectively k− and l−sawtooth. Then f + g is (k + l)−sawtooth, and
f ◦ g is kl-sawtooth.

This lemma says that the addition of sawtooth functions results in a function which is “as bumpy as both of the
functions together”, while the composition of them is multiplicatively as bumpy. This multiplication of non-linear
complexity is fundamental to the increased expressive power of deep neural networks. Put another way, depth is
exponentially more expressive than width because composition yields more complex functions than summation.
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