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Motivation



Distribution Shift
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Retraining

1. Train model
2. Observe distribution shift
3. Collect newdata

4. Gobacktostep1l




What can we say
theoretically?



Framework



Notation
0 D)
7 =(X,Y) ~ D)
((Z;0)



Risk vs .Performative Risk

R(H) .= EZND [K(Z, 9)]

PR(0) :=Ezp)t(Z;0)]




Optimality

Definition 2.1 (performative optimality and risk). A model fy,  is performatively optimal if the
following relationship holds:

Opo = i E_UZ:0).
po=argmin B ((Z;0)



Example 2.2 (biased coin flip)

Xe{-1,1}
e<05—pu pe(0,0.5)

Y | X ~Bern(0.5 + uX + €6X)
fo(x) :=0x+0.5 6¢e]|0,1]

0(z;0) := (y — fo(x))?



Example 2.2 (biased coin flip)
Y | X ~Bern(0.5+ puX +e0X) fo(z) :=0x+ 0.5

Ezp0)l(Z;0)] = ExEy x[(y — fo(x))? | X]
Evix[(y — fo(2))? | X] = X?(0° — 20u — 20%¢) + 0.25

9,

o5 () =2X2(0(1 = 2¢) — p) H

) —
PO = 71 " 9¢




Example 2.2 (biased coin flip)

e=0 = 0Opo =p

= fopo(2) = pr + 0.5 =E[Y | X =z




Example 2.2 (biased coin flip)
Y | X ~Bern(0.5+ uX + e X)
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Can we actually find
optimal points?



Problem!

PR(0) := 43@[6(2;6’)]
Ot41 1= arg minelﬁ@@[f(Z; 0))

G(0) := argming Ez .p)[€(Z;0)]




Decoupling risk

DPR(8,8") :==Ezp)[4(Z;§)]



Stability

Definition 2.3 (performative stability and decoupled risk). A model fy,, is performatively stable
if the following relationship holds:

Opg=argmin [E €(Z;0).
PS ge s 61)5)( )

QPS — arg minQDPR(st, 9)




Example 2.2 (continued)

0ps = argmin,

Lz (0ps) £(Z;0)]

Ezp@)l(Z;0)] = ExEy x[(y — fo(x))? | X]

Eyix[(y — fo(x))? | X] =

9
()

X?(—20pshe + 0% —20p) + 0.25

= X?(—20pge + 20 —2p)

arg mingE pp,p)€(Z;0)] = p+ Opse




Example 2.2 (continued)

arg mingE 7 p(gpq)4(Z;0)] = pu+ Opse

Ops = p+ Opge

14
1l — €

Ops =




Example 2.2 (continued)
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Stability vs. Optimality

DPR(8,8") :==Ezpe)[l(Z;8")]
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Stability vs. Optimality

Theorem 4.3. Suppose that the loss {(z;0) is L,-Lipschitz in z, y-strongly convex (A2), and that
the distribution map D(-) is e-sensitive. Then, for every performatively stable point Opg and every

performative optimum Opg:
2Lz¢

18po — Opsll, <

Definition 3.1 (e-sensitivity). We say that a distribution map D) is e-sensitive if for all 0,0 € ©:
Wy(D(6),D(0")) < ell6 - 6'l,

where W; denotes the Wasserstein-1 distance, or earth mover’s distance.



Theoretical Results



Assumptions

(joint smoothness) We say that a loss function ¢(z;0) is f-jointly smooth if the gradient
Vol(z;0) is B-Lipschitz in 0 and z, that is

[Vol(z:6) - Vol(z0')||, < o |[Vol(z:6)-Vot(z';0)||, < (A1)
forall 6,0’ €© and z,z" € Z.
(strong convexity) We say that a loss function ¢(z;0) is y-strongly convex if
0(z;0) > (z;0")+Vgl(z;0")T(0-0) (A2)

forall 6,0’ € © and z € Z. If y =0, this assumption is equivalent to convexity.



Assumptions

Definition 3.1 (e-sensitivity). We say that a distribution map D(-) is e-sensitive if for all 0,0” € ©:
W1(D(6),D(0")) < £ll0 - 0ll,

where W, denotes the Wasserstein-1 distance, or earth mover’s distance.



Convergence to a stable point through RRM

G(0) := argming Eyp)[0(Z;0")]

Theorem 3.5. Suppose that the loss (z;0) is B-jointly smooth (A1) and y-strongly convex (A2). If
the distribution map D(-) is e-sensitive, then the following statements are true:

(@) 1G(0)-G(0)ll < eLllo - 0'll,, forall 0,0 €©.

(b) If € < , the iterates O, of RRM converge to a unique performatively stable point Opg at a linear
rate: ”9t — Opsll; < o fort> (1 23 g%) ]Og( 6o 691’3"2 )



Proof idea

1. Part (b) follows from (a) by the Banach fixed-point theorem

2. Focusonshowingthat Gis a contraction mapping

a. Strong convexity upper bounds squared G-distance
b. Sensitivity and smoothness lower bound G- and param-distance

c. Combine resulting inequalities



Do we need these assumptions?

Proposition 3.6. Suppose that the distribution map D(-) is e-sensitive with € > 0. RRM can fail to
converge at all in any of the following cases, for any choice of parameters p,y > 0:

(a) The loss is p-jointly smooth and convex, but not strongly convex.
(b) The loss is y-strongly convex, but not jointly smooth.

(c) The loss is B-jointly smooth and y-strongly convex, but ¢ > %



Other interesting results

Theorem 3.8. Suppose that the loss {(z;0) is p-jointly smooth (A1) and y-strongly convex (A2).
If the distribution map D(-) is e-sensitive with ¢ <

4
By A+157p) then RGD with step size 1§ < z—
satisfies the following:

ﬁ+7

(@) 11Gga(6) = Gga(0")ll> < (1 -1 Theorem 3.10. Suppose that the loss £(z;0) is p-jointly smooth (A1) and y-strongly convex (A2),
(b) The iterates 0, of RGD com and that there exist & > 1, > 0 such that &, , def I]R"’ MM dD(0) is finite VO € ©. Let 5 € (0,1) be a
16, — Opsll, < 8 for t > ’1( By radius of convergence. Consider runmng RERM or RGD with n, = ((eé)’" log(%)) samples at time t.

- (a) If D(:) is e-sensitive with € < ﬁ' then with probability 1 — p, RERM satisfies,

0g (31160 - Bpsll>)
(1-3%)

(b) If D(-) is e-sensitive with & < m, then with probability 1 — p, REGD with satisfies,

1
10, — Opsll, < 0, forall t >

log (51160 — Opsll2 )

16, — Opsll, < 0, forall t >
n(£L —e(3np2+2p))

for a constant choice of step size 1 < #



Remaining Issues



SGD analysis?
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Types of Distribution Shift

Py(X) # Py (X)  Po(Y | X) = P (Y | X)

Py(Y | X) # Po (Y | X)
Py(Y | ©(X)) = Por (Y | 2(X))

D¢ (0) # Dy41(0)



Stability under different learning algorithms

Invariant Risk Minimization

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, David Lopez-Paz

min E R¢(w o @)
P:X—>H
w:H—=Y e€&y

subject to w € argmin R°(w o @), for all e € &,;.
w:H—Y




Questions?



