# Random Matrix Theory in a nutshell and applications 

Manuela Girotti

IFT 6085, February 27th, 2020

## Random Matrix Theory

Consider a matrix $A$ :

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \ldots & \cdots & a_{1 N} \\
a_{21} & a_{22} & a_{23} & \ldots & & a_{2 N} \\
a_{31} & \cdots & & & & \\
\vdots & & & & & \\
\vdots & & & & & \\
\vdots & & & & & \\
a_{M 1} & a_{N 2} & \ldots & & & a_{M N}
\end{array}\right]
$$

where the entries are random numbers:

$$
A=\left[\begin{array}{cccccc}
* & * & * & \cdots & \cdots & * \\
* & * & * & \cdots & & * \\
* & \cdots & & & & \\
\vdots & & & & & \\
\vdots & & & & & \\
\vdots & & & & & \\
* & * & \cdots & & & *
\end{array}\right]
$$


(Gaussian distribution, e.g.)

## A few questions:

- What about the eigenvalues?


Their (probable) positions will depend upon the probability distribution of the entries of the matrix in a non-trivial way. There are different statistical quantities that one may study (-discrete- spectral density, gap probability, spacing, etc.)

- What if we consider BIG matrices, possibly of $\infty$ dimension (appropriately rescaled)?




Figure: Realization of the eigenvalues of a GUE matrix of dimension $n=20,50,100$.


Figure: Histograms of the eigenvalues of GUE matrices as the size of the matrix increases.


Figure: Histograms of the eigenvalues of GUE matrices as the size of the matrix increases.

$n=50, c=2$

$n=500, c=2$


$$
n=1000, c=2
$$

Figure: Histogram of the eigenvalues of Wishart matrices as the size of the matrix increases (here $c=p / n$ ).

## Applications

- Nuclear Physics (distribution of the energy levels of highly excited states of heavy nuclei, say uranium ${ }_{92} U$ )



## Applications

- Wireless communications



## Applications

- Finance (stock markets, investment strategies)




## Applications

- Very helpful in ML!


Figure: The histogram of the eigenvalues of the gradient covariance matrix $\frac{1}{n} \sum \nabla \mathcal{L}_{i} \nabla \mathcal{L}_{i}^{T}$ for a Resnet-32 with (left) and without (right) BN after $9 k$ training steps. (from Ghorbani et al., 2019)

Thanks for your attention!
"Unfortunately, no one can be told what the Matrix is.
You have to see it for yourself."
(Morpheus, "The Matrix" movie)

