Random Matrix Theory in a nutshell and applications

Manuela Girotti

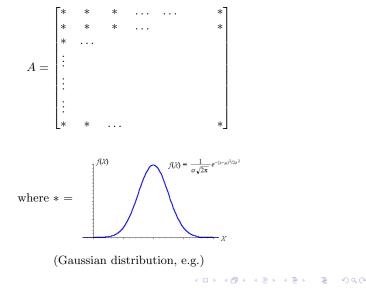
IFT 6085, February 27th, 2020

<□> <□> <□> <□> <=> <=> <=> <<

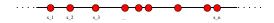
Consider a matrix A:

	a_{11}	a_{12}	a_{13}	• • •	 a_{1N}
	a_{21}	a_{22}	a_{23}	• • •	a_{2N}
	a_{31}				
A =	:				
	:				
	:				
	a_{M1}	a_{N2}			a_{MN}

◆□ → < 団 → < 目 → < 目 → < 目 → ○ < ? 2/14 where the entries are random numbers:



• What about the eigenvalues?



Their (probable) positions will depend upon the probability distribution of the entries of the matrix in a non-trivial way. There are different statistical quantities that one may study (-discrete- spectral density, gap probability, spacing, etc.) • What if we consider BIG matrices, possibly of ∞ dimension (appropriately rescaled)?

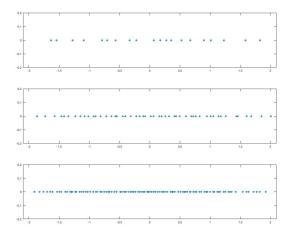


Figure: Realization of the eigenvalues of a GUE matrix of dimension n = 20, 50, 100.

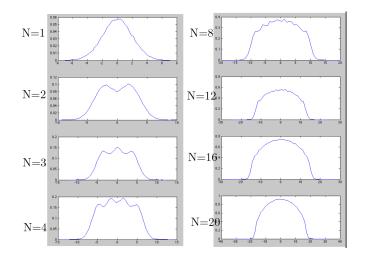


Figure: Histograms of the eigenvalues of GUE matrices as the size of the matrix increases.

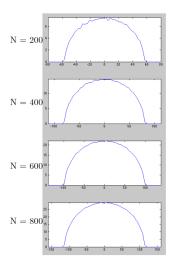
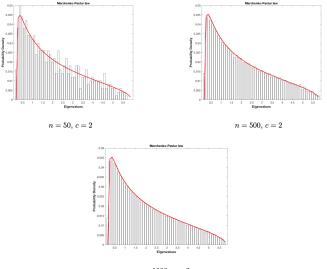


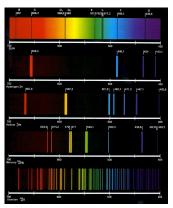
Figure: Histograms of the eigenvalues of GUE matrices as the size of the matrix increases.



n = 1000, c = 2

Figure: Histogram of the eigenvalues of Wishart matrices as the size of the matrix increases (here c = p/n).

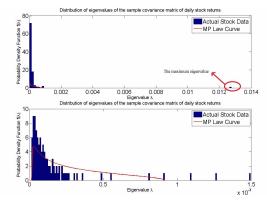
• Nuclear Physics (distribution of the energy levels of highly excited states of heavy nuclei, say uranium ${}_{92}U$)



Applications

• Wireless communications

• Finance (stock markets, investment strategies)



• Very helpful in ML!

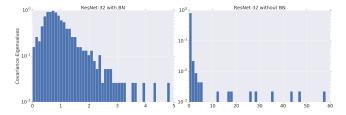


Figure: The histogram of the eigenvalues of the gradient covariance matrix $\frac{1}{n} \sum \nabla \mathcal{L}_i \nabla \mathcal{L}_i^T$ for a Resnet-32 with (left) and without (right) BN after 9k training steps. (from Ghorbani *et al.*, 2019)

Thanks for your attention!

"Unfortunately, no one can be told what the Matrix is. You have to see it for yourself."

(Morpheus, "The Matrix" movie)

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●