
IFT 6085 - Lecture 9
Stability, Generalization and the Applications of Stability

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes Instructor: Ioannis Mitliagkas
Winter 2020: Zarour Mahdi
Winter 2019: Nishanth V Anand, Parviz Haggi,
Bhargav Kanuparthi, Jonathan Pilault
Winter 2018: Isabela Albuquerque and Nithin Vasisth,
Amy Zhang, William Fedus

1 Summary of the previous lecture
Previously we discussed the idea behind a few bounds in Statistical Learning Theory, the more advanced one being
PAC-based Learning Theory. There we saw that we have to commit to a prior distribution on a hypothesis (P) and
choose the posterior hypothesis (Q) after seeing the data. This is a powerful method as different choices of prior and
posterior hypotheses can be made, each resulting in a new bound without us touching the algorithm. In a coming
lecture we will discuss a concrete example of a PAC-based bound for Neural Networks. There, the discussion will also
include the notion of stability-based bounds, which is the subject of this lecture.

The algorithm-agnostic bounds take into account the complexity of the hypothesis class of functions H, without in-
volving the algorithm or the actual distribution of the data. To put it correctly, for the Hoeffding bound to work, the
distribution of the data was included in the analysis through the assumption that the data points were i.i.d.. Apart from
that, however, no other information about the distribution was used.

Although we will not delve into the subject of distribution-agnostic bounds, in this lecture we will introduce the first
class of bounds that take into account the algorithm. The analysis is largely dependent on the notion of stability which,
simply put, says that a change in data distribution does not change the predictions.

2 PAC Learning
The setting of the Probably Approximately Correct (PAC) learning involves the same definitions as before but with a
slight change in notation that will help us in our analysis: We introduce zi = (xi, yi) i.e we give each pair a name.

Definition 1 (Training set). The training set consists of a set of values zi = (xi, yi), where xi represents a feature
vector and yi the label of the i-th sample. Furthermore, zi are assumed to be i.i.d. and sampled from an unknown data
distribution D.

S = {z1, z2, . . . , zn}

Next we define the loss function slightly differently.

Definition 2 (Loss Function). The loss function `(h(x), y) is defined as a function that takes two labels and produces
a value between 0 and some constant M .

` : Y × Y −→ [0,M].

Equivalently, defining Z ∆
= X × Y , the loss function `(h, z) can be defined as

` : H×Z −→ [0,M].

1

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Notice that, unlike its previous definition, the loss function is now assumed to be bounded by some constantM instead
of 1. Note also that Z is the space of all tuples (xi, yi) and that the previous loss function `(h(x), y) is now denoted
as `(h, z)

3 Stability
We start this section by introducing two new notions, the first of which is the notion of perturbed datasets. This is
a step-stone in introducing a new class of bounds that unlike the algorithm-agnostic bounds, are dependent on the
algorithm.

Definition 3 (A Perturbed dataset). Given a dataset S (i.i.d.), a perturbed dataset Si,z is defined as

Si,z = {z1, z2, . . . , zi−1, z, zi+1, . . . , zn}.

According to this definition, a perturbed dataset Si,z is defined by a set whose i-th element is replaced by an arbitrary
sample z. We will see that some learning algorithms give essentially a hypothesis that makes the same predictions no
matter if the algorithm is trained on the original dataset or the perturbed one.

Definition 4 (Algorithm). A learning algorithm A is defined as the following mapping

A : (X × Y)n → H.

It is clear from this definition that an algorithmA used on a dataset S, produces a hypothesis class hS i.e. hS = A(S).

Definition 5 (Uniform stability). An algorithm A is β-uniformly stable with respect to the loss function ` if

∀(S, z) ∈ Zn+1 and ∀i ∈ {1, 2, . . . , n} : sup
z′∈Z

|`(hS , z′)− `(hSi,z , z′)| ≤ β.

This definition measures stability based on how much the predictions or the losses on the predictions change when we
train using the perturbed dataset. Notice the two hypotheses: hS that we get when using the unperturbed dataset and
hSi,z that we derive from the perturbed dataset. This definition holds for any dataset but there is no assumption on
what particular distribution S comes from. The notion of a β-uniformly stable algorithm is reminiscent of the familiar
notion of Lipschitz property on the loss function. Intuitively, an algorithm with this property can be understood as
one that produces a hypothesis such that the loss function ` is not drastically affected by perturbing the dataset in this
manner.

Definition 6 (Defect).
D[hS] = R[hS]− R̂S [hS].

Defect D[hS] for a hypothesis hS derived from an algorithm after seeing the dataset S is defined as the difference
between the population risk and the empirical risk.

While it is true that for an arbitrary hypothesis h ∈ H, E[D[h]] = E[R[h] − R̂S [h]] = 0, this is not the case for
D[hS] i.e. we will generally have

E[D[hS]] 6= 0.

This is due to second term R̂S [hS] which evaluates the empirical risk on the same dataset that is also used to extract
the hypothesis.

ES [R̂S [hS]] = ES [
1

n

n∑
i=1

`(hS(xi), yi)]

=
1

n

n∑
i=1

ES [`(hS(xi), yi)]

6= ES [Ez∼D [`(hS(x), y)]]
∆
= ES [R[hS]]

2

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

In the second line of the above equation, the expectation value is evaluated based on the dataset S and the hypothesis
extracted from it. The expectation value of the population risk on the learned hypothesis (third line) is evaluated on a
random variable z, independent from S and drawn from the distribution that the dataset is assumed to come from. The
two entities are generally completely different simply because we need the independence assumption for the popula-
tion risk.

A meaningful question to ask here is whether the expectation value of the defect, which we showed is generally non-
zero, can be bounded. In what follows, we will show that the answer is yes and that this can be done under certain
conditions.

Theorem 7 (Bounding the expectation value of the defect). If A is a β-uniformly stable algorithm, then

−β ≤ ES [D[hS]] ≤ β.

Proof. We prove this for one side of the inequality: −ES [D[hS]] ≤ β

−ES [D[hS]] = ES
[
R̂S [hS]−R[hS]

]
= ES

[1
n

n∑
i=1

`(hS , zi)− Ez`(hS , z)
]

= ES,z
[1
n

n∑
i=1

[
`(hS , zi)− `(hS , z)

]]
= ES,z

[1
n

n∑
i=1

[
`(hSi,z , z)− `(hS , z)

]]
≤ ES,z

[1
n

n∑
i=1

β
]
= β

In the second line we inserted the population risk as defined above: R[hS] = Ez`(hS , z) In the third line, we used
Fubini’s theorem which allows us to change the order of the two expectations ES and Ez as they are independent and
bounded (due to the fact that the loss function is bounded by M). In the fourth line we rename a variable and finally
we calculate the upper bound by using the definition of β-stability.
Note concerning the 4th line of the proof:
- Getting a hypothesis from (z1, z2, ..., zn) which is hS and computing the loss in z1 for example.
- And Getting a hypothesis from (z, z2, ..., zn) which is hS1,z and computing the loss in z is the same thing.
And we generalize that for i in {1, 2, ..., n}
In conclusion we have proven the following relationship between the expectation values of the empirical and popula-
tion risks:

Property 8 (The relationship between the empirical and the population risk).

ES [R[hS]] ≤ ES [R̂S [hS]] + β.

Note that this is a bound on the expectation value of the population risk. However, even if the expectation values
of R[hS] and R̂S [hS] are close, this bound does not necessarily hold for all possible hS . In what follows, we will
demonstrate that for a β-uniformly stable algorithm, the population risk R[hS] can be shown to be bounded above by
the empirical risk R̂S [hS] plus certain other quantities. To do so we will first introduce McDiramid’s inequality, a well
known concentration inequality.

3

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Theorem 9 (McDiarmid’s inequality). Let V1, V2, V3, . . . , Vn ∈ V be independent random variables, and
v1, v2, v3, . . . , vn denote specific values (not independent). If a function f : Vn → R has the property that
∀i ∈ {1, 2, . . . , n},

sup
v1,v2,...,vn,vi′

∣∣∣∣f(v1, v2, . . . , vn)− f(v1, . . . , vi−1, v
′

i, vi+1, . . . vn)

∣∣∣∣ ≤ ci
then

P
(∣∣f(V1, V2, . . . , Vn)− Ef(V1, V2, . . . , Vn)

∣∣ > ε

)
≤ 2 exp

−2ε2∑
i c

2
i

Proof. See Appendix D.2 of [1].

This bound is useful because if we prove that an algorithm is β stable then we will have this property on a specific
function.

Theorem 10 (Bound for the defect). Let ”A” be a β uniformly stable learning algorithm with respect to a loss function
` : Y × Y → [0,M]. The absolute difference of the defect calculated on a dataset S and on a perturbed version of
this dataset Si,z is bounded by ∣∣∣∣D[hS]−D[hSi,z]

∣∣∣∣ ≤ 2β +
M

n
.

This theorem gives us a bound on the gap between the actual dataset and the perturbed dataset. This is used as a
stepping stone in the final theorem. In other words, the theorem tells us that the population risk and the empirical risk
are close to each other. This theorem is an example of the use case of McDiramid’s inequality.

Proof. Let us expand the following quantity using their definition:

|D[hS]−D[hSi,z]| = |R[hS]− R̂S [hS]−R[hSi,z] + R̂Si,z [hSi,z]| (1)

Using the triangle inequality:

|D[hS]−D[hSi,z]| ≤ |R[hS]−R[hSi,z]|+ |R̂Si,z [hSi,z]− R̂S [hS]| (2)

Now, we use the β uniform stability of algorithm A with respect to the loss function ` to find a bound for |R[hS] −
R[hSi,z]|: ∣∣R[hS]−R[hSi,z]∣∣ = ∣∣Ez′∼D[`(hS , z′)]− Ez′ [`(hSi,z , z′)]

∣∣
=
∣∣Ez′∼D[`(hS , z′)− `(hSi,z , z′))]∣∣

≤ β
(3)

We can find a bound for |R̂Si,z [hSi,z] − R̂S [hS]| by expanding the quantities using their definition (notice that the
perturbed dataset is only the non-perturbed one with subtracting zi and adding z instead)∣∣R̂Si,z [hSi,z]− R̂S [hS]∣∣ =∣∣∣∣ 1n

n∑
j=1

`(hSi,z , zj)−
1

n
`(hSi,z , zi) +

1

n
`(hSi,z , z)−

1

n

n∑
j=1

`(hS , zj)

∣∣∣∣
≤ 1

n

∣∣∣∣`(hSi,z , z)− `(hSi,z , zi)∣∣∣∣+ 1

n

∑
j

∣∣∣∣`(hSi,z , zj)− `(hS , zj)∣∣∣∣
≤ M

n
+ β

(4)

We could do this last step because we know that
∣∣∣∣`(hSi,z , z)− `(hSi,z , zi)∣∣∣∣ is bounded by M from Definition 2

We now plug in the results obtained from Eq 3 and Eq 4 in Eq 2 to get the proof.

|D[hS]−D[hSi,z]| ≤ 2β +
M

n
(5)

4

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Theorem 11 (Bound for the population risk of a β-uniformly stable algorithm). Consider a β-uniformly stable algo-
rithm A with respect to a loss function ` : Y × Y → [0,M] and a hypothesis hS with |S| = n. The following bound
holds with probability 1− δ:

R[hS] ≤ R̂S [hS] + β +

(
nβ +

M

2

)√
2 log 2

δ

n
.

Note that:

• R̂S [hS] is empirical risk

• β is from theorem 7

•
(
nβ + M

2

)√ 2 log 2
δ

n is a concentration inequality (McDiramid’s)

Proof. Using theorem 10, we state McDiarmid’s inequality forD[hS] and then use this result to find a high probability
bound for D[hS]:

sup
S,i,z
|D[hS]−D[hSi,z]| ≤ 2β +

M

n
(6)

then

P (|D[hS]− E[D[hS]]| > ε) ≤ 2 exp

(
−2ε2∑n

i=1

(
2β + M

n

)2
)
,

= 2 exp

(
−2nε2

(2nβ +M)
2

)
,

= 2 exp

(
−2nε2

4
(
nβ + M

2

)2
)
,

= 2 exp

(
−nε2

2
(
nβ + M

2

)2
)
.

(7)

Denoting δ = 2 exp

(
−nε2

2(nβ+M
2)

2

)
and solving this equation for ε, we obtain:

δ = 2 exp

(
−nε2

2
(
nβ + M

2

)2
)
⇒ nε2 = 2 log

2

δ

(
nβ +

M

2

)2

⇒ ε =

(
nβ +

M

2

)√
2 log 2

δ

n
.

(8)

Thus, with probability 1− δ

|D[hS]− E[D[hS]]| ≤ ε
D[hS] ≤ E[D[hS]] + ε

D[hS] ≤ β + ε

Replacing ε by the result previously obtained in Eq. 8

D[hS] ≤ β +

(
nβ +

M

2

)√
2 log 2

δ

n
(9)

we finally get the desired result,

R[hS] ≤ R̂S [hS] + β +

(
nβ +

M

2

)√
2 log 2

δ

n
(10)

5

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Some notes :
- Notice that as n goes up, our bound becomes less tight (even vacuous) which is not what we want. So we are not
satisfied with our current results.
- The term (βn+ M

2)
√

2 ln 2/δ
n is O(β

√
n). Informally, an algorithm is stable if β = O(1

n). If stability is O(1√
n
), this

term is O(1) and we can no longer show decrease in generalization gap with with increase in n.
The following illustration represents a summary of the bounds stated in Theorem 7 and 11 (in terms of the defect):

−β β−β − ε β + ε

D[hS] (w.p. 1− δ)

E[D[hS]]

One can observe that despite the fact the bound for E[D[hS]] is tighter, we have no guarantees that the actual of D[hS]
lies in the interval [−β, β]. On the other hand, it possible to assure with probability 1− δ will be in [−β − ε, β + ε].

Summary
Sufficient condition: Given enough samples we can achieve a good enough generalization. However, typically
in deep learning, we never have large enough data sets to get non-vacuous or meaningful bounds.

Last part Next part
PAC Bounds Stability

Occam Bounds PAC Bayes
PAC Bayes Bounds (Practical) Generalization

Stability Bounds

How can we go from PAC Bayes to a non-vacuous generalization bound?

By sacrificing some data as part of a dedicated test set, we can measure test set generalization and achieve a tighter
bound than the weak population bounds. See Tutorial on Practical Prediction Theory for Classification [?] for a
comprehensive examination.

Empirical Risk Minimization + Regularization is Stable
Notation:

R̂S(w) , R̂S(hw)

where hw is a model parameterized by weights w.

l(h, z) ≡ l(h(x), y)
l(hw, z) ≡ l(w, z)

Theorem 12 (ERM with regularization is β-stable). Under the assumption that R̂S(w) is λ-convex and l(·|z) is
L-Lipschitz ∀z, Empirical Risk Minimization and Regularization is β uniformly stable where

β =
4L2

λn

Proof. The objective function to be optimized can be written as

fS(w) = R̂S(w) +
λ

2
||w||22

6

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Consider weights u, v for two different models.

fS(v)− fS(u) = [R̂S(v) +
λ

2
||v||22]− [R̂S(u) +

λ

2
||u||22]

We perturb the dataset by replacing the data point at i with z′i. Now we get:

fS(v)− fS(u) = R̂Si,z′
i
(v) +

λ

2
||v||22 − (R̂Si,z′

i
(u) +

λ

2
||u||22) +

l(v, zi)− l(v, z′i)
n

− l(u, zi)− l(u, z′i)
n

= fSi,z′
i
(v)− fSi,z′

i
(u) +

l(v, zi)− l(v, z′i)
n

− l(u, zi)− l(u, z′i)
n

Now we substitute v = A(Si,z′i) and u = A(S).

fS(A(Si,z′i))− fS(A(S)) =fSi,z′i (A(Si,z
′
i
))− fSi,z′

i
(A(S))

+
l(A(Si,z′i), zi)− l(A(Si,z′i), z

′
i)

n
− l(A(S), zi)− l(A(S), z′i)

n

Because

fSi,z′
i
(A(Si,z′i)) = min

w
fSi,z′

i
(w)

=⇒ ∀wfSi,z′
i
(w) ≥ f(Si,z′i)(A(Si,z′i))

Assumption 13. l(·|z) is L-Lipschitz.

fS(A(Si,z′i))− fS(A(S)) ≤
l(A(Si,z′i), zi)− l(A(S), zi)

n
− l(A(Si,z′i), z′i)− l(A(S), z′i)

n

≤ 2
L

n
||A(S)−A(Si,z′i)||2 (11)

Assumption 14. R̂S(w) is cvx.

Which gives us fS(w) is λ-str cvx. Now we perform a Taylor expansion:

fS(A(Si,z′i))− fS(A(S)) ≥
λ

2
||A(Si,z′i)−A(S)||

2
2 (12)

Since A(S) is the minimizer of fs and λ-str cvx the first term disappears.
From 11 and 12 we get:

||A(S)−A(Si,z′i)|| ≤
4L

λn
(13)

If we perturb the data by a single element, we learn A that can become arbitrarily close for large n.
We then use 13 and the L-Lipschitz property of l(·, z):

=⇒ sup
z
[l(A(S), z)− l(A(Si,z′i), z)| ≤

4L2

λn

7

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Stochastic Gradient Descent (SGD) is Stable

Stability Theorem
Recall the SGD update formula,

wt+1 = wt − αt∇wl(wt, zi,t), it ∼ uniform(1, · · · , n) (14)

where wt is the weight iterate at time t, αt is an (annealing) learning rate at time t and l(wt, zi,t) is the computed loss
for the current weight iterate for a particular example zi,t.

Theorem 15. If f(·, z) is γ-smooth, convex and L-Lipschitz, then Stochastic Gradient Descent is β-uniformly stable
where

β ≤ 2L2

n

T∑
t=1

αt

Analysis:
We are no longer requiring the function to be strongly convex. Additionally, this result holds for a finite number of
steps T .

Stability Proof (Rough Outline)
We will consider two runs of the SGD algorithm. One run will be on the original data set S and the other run will be
on the data set Si,z′i . Recall, this indicates the same data set S only now with the ith element swapped with element
z′i. In order to compare the stability between the two runs, we maintain the same order of element selection (same
random seed) for t = 1, · · · , T .

Definition 16.
δt = ||wt − w′t||

where w′t denotes the iterate for the SGD algorithm on the data set Si,z′i .
We can write the expectation of the difference δt+1 as the following:

E[δt+1] = P (it = i)E[δt+1|it = i] + P (it 6= i)E[δt+1|it 6= i] (15)

We introduce two Lemmas
E[δt+1|it 6= i] ≤ E[δt]

Proof. Convexity and γ-smoothness implies that the gradients are co-coercive for a function f :

〈∇f(v)−∇f(w), v − w〉 ≥ 1

γ
||∇f(v)−∇f(w)||2

We conclude that the weight update can be expressed as:

||wt+1 − w′t+1||2 = ||wt − w′t||2 − 2αt〈∇f(wt)−∇f(w′t), wt − w′t〉+ α2||∇f(wt)−∇f(w′t)||2

≤ ||wt − w′t||2 − (2αt/γ − α2
t)||∇f(wt)−∇f(w′t)||2 ≤ ||wt − w′t||2

so we get, using definition 7 that:

||wt+1 − w′t+1|| = δt+1 ≤ ||wt − w′t|| = δt

8

IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

And for the index that has been swapped

E[δt+1|it = i] ≤ E[δt] + 2αtL

where L is the Lipschitz value.

Proof. We know that

δt+1 = ||wt+1 − w′t+1|| = ||wt − αt∇l(wt, zit)− (w′t − αt∇l(w′t, zit))||

Using the triangle inequality we can write

δt+1 ≤ ||wt − w′t||+ αt||∇l(wt, zit)−∇l(w′t, zit)||

Since l(·, z) is L-lipschitz
δt+1 ≤ δt + 2αtL

Taking expectation on either side we get

E[δt+1|it = i] ≤ E[δt] + 2αtL

Using Lemmas 3, 3, we may rewrite Equation 15 as:

E[δt+1] ≤
(
1− 1

n

)
E[δt] +

1

n
(E[δt] + 2αtL) (16)

which when recursively unrolled yields the following final δT

E[δT] = E[||wT − w′T ||] ≤
T−1∑
t=0

2αtL

n
(17)

We find that:
E[δt+1] = P (it = i)E[δt+1|it = i] + P (it 6= i)E[δt+1|it 6= i]]

≤ 1

n
(E[δt] + 2αtL) + E[δt](1 +

1

n
) ≤ E[δt] +

2αtL

n

SGD is therefore stable since
∑T−1
t=0

2αtL
n ≡ β is O(1

n) for n data points.

References
[1] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2012.

9

	Summary of the previous lecture
	PAC Learning
	Stability

