
IFT 6085 - Lecture 7
Elements of statistical learning theory

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes Instructor: Ioannis Mitliagkas
Winter 2020: Meraj Hashemizadeh
Winter 2019: Mingde (Harry) Zhao & Dylan Troop
Winter 2018: Brady Neal and Matthew Scicluna

1 Summary
In the previous lecture we dove into the details of Nesterov’s accelerated gradient descent and made thorough com-
parisons with Polyak’s momentum (the heavy ball method). In this lecture we will start discussing statistical learning
theory, the goal of which is to determine how well a model performs on unseen data.

Lecture Topics:

• Define the generalization gap and illustrate why it is the focus of our study

• Introduce some concentration bounds, such as Markov’s inequality, Chebyshev’s inequality, Chernoff’s bound
and Hoeffding’s Inequality

• Prove a bound on the generalization gap for countable, finite hypothesis classes using Hoeffding’s Inequality
and the Union Bound

• Introduce the uniform convergence framework for learning

• Introduce the VC dimension

2 Introduction and Notation
The goal in machine learning is not to perform well on training data, but to perform well on unseen data. We say that
a model “generalizes well” if it performs roughly the same on test data as it does on training data. Statistical learning
theory is largely concerned with theoretical bounds on this difference in performance, also known as the generalization
gap. In this lecture, we focus specifically on binary classification, but these results can be easily extended to multi-class
classification.

Notation:

• X - domain set (input space)

• Y - label set (output space)

• m - number of training examples

• S = {(x1, y1), (x2, y2), . . . , (xm, ym)} - training set where (xi, yi) ∈ X × Y

• D - distribution over the data. That is, (xi, yi) ∼ D. Note that in our setup we have a joint distribution rather
than just xi being random and yi being a deterministic function of xi

• H - hypothesis class (class of possible models we can learn; examples below)
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– HSVM: class of possible SVMs on a dataset

– HLR: class of possible logistic regression models on a dataset

– HNN: class of possible neural networks of a fixed architecture on a dataset

– H ⊂ {h : X → Y}: H is a subset of all possible functions that map from input space to output space.
Choosing this subset (hypothesis class),H, introduces inductive bias.

– In the example of binary classification on a d dimensional real-valued dataset, we have h(xi) = ŷi where
h ∈ H, xi ∈ Rd ≡ X , ŷi ∈ {0, 1} ≡ Y

• `(ŷ, y): loss, or error, function that measures the difference between the prediction, ŷ, and the true label, y (e.g.
0-1 loss, squared loss, etc.)

– `0−1(ŷ, y) = 1(ŷ 6= y)

– `squared(ŷ, y) = (ŷ − y)2

3 Empirical Risk Minimization and Generalization Gap
The goal is to identify the hypothesis h ∈ H that gives the best performance on D. If we knew D then we could
evaluate h via the risk:

Definition 1 (True Risk).
R[h] ≡ E(x,y)∼D[l(h(x), y)]

Definition 2 (Empirical Risk).

R̂S [h] ≡ 1

m

m∑
i=1

l(h(xi), yi)

The essential task of supervised learning is to maximize the performance on all of the possible data via the adjustment
of h on a particularly drawn sample set S, which is often regarded as “generalization”. The difference between
performance of h on S and on D is the thing we want to minimize.

Definition 3 (Generalization Gap). Given an sample set S = (xi, yi), i ∈ {1, . . . ,m}, drawn i.i.d. from D, a
hypothesis hS learnt on S, and a specific definition of loss l, the generalization gap is defined as

εgen(hS) = |R[hS ]− R̂S [hS ]|

One of the most featured results of statistical learning theory is upper bounding this generalization gap, i.e. to find
R(hS) ≤ R̂S(hS) + ε. Modern results bound the generalization gap tighter with the help of the properties of the
specific hypotheses, while the earlier results are more general which did not take into account the properties of the
hypotheses. In this lecture, we will discuss the latter.

4 Generalization Bound for Finite Hypothesis Classes
We will first introduce some tail inequalities from probability theory and use them to bound the generalization gap for
a fixed h ∈ H. Then we will use the union bound to show that the generalization gap for any h ∈ H can be bounded.

Lemma 4 (Markov’s Inequality). Let Z be a non-negative random variable. Then for ∀a > 0,

P{Z ≥ a} ≤ E[Z]

a

This may not be a tight bound, but it is useful to arrive at other results. Chebyshev’s inequality is one of the most
famous corollaries of Markov’s inequality.
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Lemma 5 (Chebyshev’s Inequality). Let X be an integrable random variable with finite expectation and finite non-
zero variance. Then for ∀a > 0,

P{|X − E[X]| ≥ a} ≤ V ar[X]

a2

Lemma 6 (Generic Chernoff’s Bound). Let X be a random variable. Then for ∀t > 0 and a constant a,

P{X ≥ a} = P{etX ≥ eta} ≤ E[etX ]

eta

The generic Chernoff’s bound is a family of upper-bounds obtained by using the monotonicity of the exponential
function and Markov’s inequality. Note that though each t gives a different bound, we can minimize the bound with
respect to t to get the tightest upper-bound, i.e. P{X ≥ a} ≤ inf

t≥0
e−taE[etX ]. Such probabilistic bounds that show

some random variable is close to its mean with high probability are called concentration bounds.

Lemma 7 (Hoeffding’s Lemma). Let X be a random variable taking values in the interval [a, b], with the expectation
value of 0. Then for ∀λ > 0,

E[eλX ] ≤ e
λ2(b−a)2

8

eλX is often regarded as the moment generating function of the random variable X .

Theorem 8 (Hoeffding’s Inequality). LetZ1, · · · , Zm be independent random variables such that P{a ≤ Zi ≤ b} = 1
for i = 1, . . . ,m. Let Z̄ = 1

m

∑m
i=1 Zi. Then, for any ε > 0:

P
(∣∣ Z̄ − E[Z̄]

∣∣ > ε
)
≤ 2 exp

(
−2mε2

(b− a)2

)
Proof. (See Understanding Machine Learning [1] Appendix B.4)
First, we will try to shift Zi by its mean. DefineXi ≡ Zi−E[Z̄] = Zi−µ, i ∈ {1, . . . ,m}. Denote X̄ ≡ 1

m

∑m
i=1Xi.

With this we use the Chernoff bounds and get that for ∀λ > 0,

P{X̄ ≥ ε} = P{eλX̄ ≥ eλε} ≤ E[eλX̄ ]

eλε
= e−λε · E[eλ( 1

m

∑m
i=1Xi)] = e−λε

m∏
i=1

E[eλXi/m]

Here Xi/m is a zero mean random variable that lives in the interval [a−µm , b−µm ]. Thus we can use Hoeffding’s lemma
and get

P{X̄ ≥ ε} ≤ e−λε+
λ2(b−a)2

8m

We then minimize the RHS w.r.t. λ and get

min
λ
e−λε+

λ2(b−a)2
8m = exp

(
−2mε2

(b− a)2

)

By the same argument we can show that P{−X̄ ≥ ε} ≤ e−λε+
λ2(b−a)2

8m , and thus we get the desired result from the
union of two disjoint probabilities:

P
(
|X̄| > ε

)
≤ 2 exp

(
−2mε2

(b− a)2

)

The expression above says that for any positive ε, our sample mean will be at least ε away from its expected value with
a probability that decays exponentially with the number of training examples we have.
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Definition 9 (PAC Learning). A hypothesis class H is (Agnostic) PAC Learnable if given some arbitrary ε, δ > 0
there exist an mH(ε, δ) such that for any S with |S| > mH(ε, δ) we have εgen(hS) ≤ ε with probability at least 1− δ.
The “probably” (P) part of PAC corresponds to 1− δ while the “approximately correct” (AC) part corresponds to ε.
mH(ε, δ) is known as the Sample Complexity of the hypothesis class.

We will now show that any finite hypothesis class H is agnostic PAC learnable. We first derive a probabilistic bound
on the following distance that holds for any h ∈ H:∣∣∣R[h]− R̂S [h]

∣∣∣
We notice that this is just the absolute distance between the empirical average R̂S [h] and its mean since:

E[R̂S [h]] = E

[
1

m

m∑
i=1

`(h(xi), yi)

]
=

1

m

m∑
i=1

E[`(h(xi), yi)] = R[h]

We can use Hoeffding’s inequality to decide how many samples we would need to take to guarantee that

P
(∣∣∣ R̂S [h]−R[h]

∣∣∣ < ε
)
> 1− δ

If we set δ = exp
(
−2mε2

)
we can solve to get m = O

(
− log(δ)
ε2

)
. Note: this is a lower bound on the sample size

which guarantees the statement above, (see Sample Complexity in the PAC Learning definition above).

Now, suppose we consider an arbitrary h ∈ H and a loss function ` with range [0, 1]. For the random variable R̂S [h]
we can use Hoeffding’s inequality to get:

P
(∣∣∣ R̂S [h]−R[h]

∣∣∣ ≥ ε) ≤ 2 exp
(
−2mε2

)
Note: We cannot simply replace h with hS in this bound because the loss on the data points will not be independent
any more, and therefore Hoeffding inequality will not hold.

So to extend this bound for εgen(hS) we will use union bound:

P
(∣∣∣ R̂S [hS ]−R[hS ]

∣∣∣ ≥ ε) ≤ P (max
h∈H

∣∣∣ R̂S [hS ]−R[hS ]
∣∣∣ > ε

)
= P

( ⋃
h∈H

{∣∣∣ R̂S [h]−R[h]
∣∣∣ > ε

})
(a)

≤
∑
h∈H

P
(∣∣∣ R̂S [h]−R[h]

∣∣∣ > ε
)

= 2|H| exp
(
−2mε2

)
Where (a) follows using a union bound argument. We can prove this in the case of 2 events and then use induction. In
this case P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B).

If we take

m = O

(
log( |H|δ )

ε2

)
We get the desired result:

P
(∣∣∣ R̂S [hS ]−R[hS ]

∣∣∣ ≥ ε) ≤ δ
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5 Uniform convergence
For ERM to work, it suffices to ensure that the empirical risk of all hypothesis in H are good approximations of their
true risk. In other words, we need that uniformly over all hypothesis in H, the empirical risk is close to the true risk.
In the this section we will formalize this.

Definition 10 (ε-representative sample). A training set S is called ε-representative if:

∀h ∈ H,
∣∣∣ R̂S [h]−R[h]

∣∣∣ ≤ ε
The following lemma shows that when we have a ε

2 -representative sample the ERM learning rule (hS) is guaranteed
to be a good hypothesis.

Lemma 11. Assume that a training set S is ε
2 -representative; then, any hS ∈ argminh∈H R̂S [h], satisfies:

R[hS ] ≤ min
h∈H

R[h] + ε

Proof.

R[hS ]
(a)

≤ R̂S [hS ] +
ε

2

(b)

≤ R̂S [h] +
ε

2

(a)

≤ R[h] +
ε

2
+
ε

2
= R[h] + ε

where (a) comes from the ε-representative definition and (b) comes from the fact that hS is a ERM learning rule.

This lemma shows that to be PAC learnable it suffices to prove the training set is ε-representative with high probability.

6 VC dimension
In the previous parts we considered finite hypothesis classes. What happens when the number of hypotheses is infinite?
We cannot just apply a union bound any more. To solve this issue, we need to have more a suitable way of measuring
the “complexity” of a hypothesis class other than cardinality.

Definition 12 (Shattering). A set of points S is shattered by a hypothesis class H if there are hypotheses in H that
split S in all of the 2|S|possible ways; i.e., all possible ways of classifying points in S are achievable using concepts
inH.

Definition 13 (VC dimension ofH). The VC dimension of a hypothesis spaceH is the cardinality of the largest set S
that can be shattered byH. If arbitrarily large finite sets can be shattered byH, then VCdim(H) =∞.

Informally VC dimension is the maximum number of distinct points that a hypothesis inH can correctly classify every
possible labeling with zero error.

Example: (one dimensional threshold functions). Let X = R, Y = {0, 1} and H = {ha(x) = 1[x ≤ a] : a ∈ R}.
We will try to calculate the VC-dimension of this hypothesis class. To do so we need to see how many points we can
label all of its configurations using threshold functions.

No threshold function can

label this setting

Figure 1: All the possible labelings for set of one and two points

As seen in Figure 1 our hypothesis class can label 1 points, but no set of 2 points can be labeled. Therefore the
VC-dimension of this hypothesis class is 1.
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