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1 Summary
In the previous lectures we summarized our analysis of upper bounds for the rate of convergence of gradient descent
when applied to convex objective functions with various properties. We saw that using β-smoothness and α-strongly
convex functions give exponential rate of convergence.
These upper bounds are summarized in Table 1

Property of the Convex Objective Function Upper Bound on Convergence Rate

L-lipschitz D1L√
T

β-smooth D2
1β
T

α-strongly convex and L-lipschitz L2

αT

α-strongly convex and β-smooth D2
1 exp(−Tκ )

Table 1: Various upper bounds on convegence rates in gradient descent depending on the properties of the objective
function. Note D1 = ‖x1 − x∗‖22, [3].

In the last lecture we derived a lower bound for the rate of convergence of any black box model on β-smoothness and
α-strongly convex objectives by constructing the “hardest function” in that class of functions. Our analysis left a gap
between the lower bound and the upper bound of the rate of convergence of gradient descent which we aim to fill in
this lecture by showing that accelerated methods achieve this lower bound.

In this lecture we first analyze how the step size affects the convergence rate of gradient descent for quadratic objec-
tives. Then we introduce an alternative convergence proof technique using eigenvalue analysis of operators. Subse-
quently, we introduce Polyak’s momentum [5] (a.k.a. heavy ball method) and some convergence guarantees on the
same objectives. This analysis allows us to close the gap between the upper bound and lower bound on the convergence
rate of gradient descent for quadratic functions. These notes are based on [2, 6, 4].

2 Convergence of gradient descent
In this section we analyze how the choice of step size affects the rate of convergence of gradient descent and give some
intuition behind the optimal choice using quadratic objectives.
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Recall the update rule for standard gradient descent.

xt+1 = xt − γ∇f(xt) (1)

We start by considering the simplest scalar quadratic objective function:

f(x) =
h

2
x2 (2)

We seek to minimize this function using gradient descent, giving rise to the following update rule:

xt+1 = xt − γ∇f(xt)

= xt − γhxt
= (1− γh)xt

= (1− γh)(1− γh)xt−1 expanding xt
= (1− γh)(1− γh)(1− γh)xt−2

...

We note that this is a linear system and repeated applications of the linear operator arrive at:

xt+1 = (1− γh)tx1, (3)

The speed at which the sequence xt+1 converges to x∗ is determined by the rate of convergence ρ = |1 − γh|. This
implies that if we set a suitable step size γ such that ρ < 1 then ‖xt − x∗‖ → 0.

We note the relaxation property of gradient descent:

f(xt+1) ≤ f(xt), (4)

which reflects the fact that the objective function does not increase, provided a small enough step size γ. This is a
natural property to have for optimization, and it is crucial for the analysis of gradient descent. However, we lose it
with certain accelerated methods like momentum.

Going back to the case of the scalar quadratic objective, below we show the convergence rate dependence on the
learning rate and curvature respectively. We see that if γ = 2

h , given the update rule xt+1 = xt − 2
hhxt = −xt, this

means we will oscillate forever. Whenever γ > 1
h we will have some kind of oscillation. However, if γ = 1, nothing

changes. The plots in Figure 1 look particularly identical because γ and h appear together in the rate of convergence
equation.

Makai

Hang

Figure 1: Convergence rate as a function of the learning rate (left plot) and curvature (right plot), for the function
h
2x

2, [3].
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Moving on to a multivariate quadratic objective function, we assume without loss of generality that the Hessian H is
diagonal. We can make this assumption because if H is general non-diagonal, and symmetric by definition, we can
always do a decomposition into H = UΛUT and a change of basis to get a diagonal Hessian:

f(x) =
1

2
xTUΛUTx, with w = UTx giving f(w) =

1

2
wTΛw (5)

Suppose then that we have the following quadratic:

f(x) =
1

2
xTHx where H =

h1 0 0
0 h2 0
0 0 h3

 (6)

We can further decompose the vector dynamics into scalar dynamics dependent on eigendirections, where we denote
with i the component of the vector x and the correspondent curvature in the Hessian h.

xt+1(i) = xt(i)− γh(i)xt(i)

= (1− γh(i))xt(i)

= (1− γh(i))tx1(i)

Taking the following concrete example, where

H =

1 0 0
0 2 0
0 0 3

 (7)

we observe that we get contrasting convergence rates for different directions that have distinct curvatures. The con-
vergence rate thus decomposes into a sum where the largest convergence rate dominates - indicated by the lowest
eigenvalue:

||xt − x∗||2 ≤ c1ρ2t1 + c2ρ2t2 + c3ρ2t3 . (8)

Note the convergence rate for a given curvature will vary depending on the learning rate. In the left plot of Figure 2,
convergence rate continues to decrease with an increasing curvature and a learning of γ = 0.25. In the right plot of
Figure 2, convergence diverges with increasing curvature, for a learning rate of γ = 0.75.
We can establish then that the goal is to find:

min
γ

max{ρ1, ρ2, ρ3} (9)

mad mock

Figure 2: Convergence rate as a function of curvature. The left plot shows convergence with learning rate γ = 0.25,
and γ = 0.75 for the right plot, [3].
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Figure 3 shows that the optimal learning rate is that which balances the convergence rate between extreme curvatures.
Setting the convergence rate to be equal for the smallest and largest eigenvalues, we can solve for the optimal step size
and rate:

|1− γhmin| = |1− γhmax| (10)

γ∗ =
2

hmin + hmax
= 0.5 (11)

ask

Figure 3: Convergence rate as a function of curvature given the optimal learning rate, [3].

It may seem strange that the dimension with highest curvature would converge at the same rate as the dimension with
lowest curvature, as shown in Figure 3. The intuition is that the sequence of updates oscillates in the dimension with
highest curvature, while in the other one convergence is very slow.

3 Polyak’s momentum
Momentum gradient descent, or the heavy ball algorithm was first proposed in the 60s. It combines the current gradient
with a history of the previous step to accelerate the convergence of the algorithm. For example, the images below show
a valley like landscape, where the algorithm wants to reach the optimal point.

Figure 4: Without momentum, gradient descent oscillates, whereas with momentum, we find that it converges much
closer to the optimal point in the same number of iterations, [2].

Polyak’s momentum, also known as the “heavy ball method”, introduces a “momentum” term µ(xt − xt−1), inspired
by physics interpretations. If we imagine the current iterate as an object with mass, then our gradient descent update
should be proportional to the previous step size. The full momentum update is:

xt+1 = xt − γ∇f(xt) + µ(xt − xt−1) (12)

where µ is a hyperparameter (typically µ ∈ [0, 1], although not limited to it), which scales down the previous step.
Adding this scaled previous step controls oscillation and in low curvatures causes acceleration along the same direc-
tion. The overall effect is that it allows the step size γ to be larger and decreases the number of steps to convergence,
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which is illustrated in the change of convergence rate.

Figure 5 illustrates how the convergence rate dynamics change in this case, i.e. we achieve the same rate of convergence
for all curvature - a property unique to Polyak’s momentum.

adding

Brained

Figure 5: Convergence rate as a function of curvature. The blue curve is standard gradient descent without momentum,
whereas the green curve includes momentum with µ = 0.1, [3].

3.1 Convergence rate of Polyak’s Momentum for a quadratic loss
Going back to our previous scalar quadratic objective:

f(x) =
h

2
x2 (13)

Let’s write the momentum update rule for this function and do some simple algebraic manipulations to obtain a more
convenient form:

xt+1 = xt − γ∇f(xt) + µ(xt − xt−1)

= xt − γhxt + µ(xt − xt−1)

= (1 + µ− γh)xt − µxt−1

We can further write the above equation as a linear system:[
xt+1

xt

]
=

[
1− γh+ µ −µ

1 0

] [
xt
xt−1

]
(14)

Note the recursive property of the above. By denoting the linear operator with A, we can recurse A for t steps and
express xt+1, xt as a function of starting values x1, x0:[

xt+1

xt

]
= At

[
x1
x0

]
(15)

Consider comparing our iterated xt with optimal x∗:

[
xt+1 − x∗
xt − x∗

]
= At

[
x1 − x∗
x0 − x∗

]
,∥∥∥∥[xt+1 − x∗

xt − x∗
]∥∥∥∥

2

=

∥∥∥∥At [x1 − x∗x0 − x∗
]∥∥∥∥

2

,

≤
∥∥At∥∥

2

∥∥∥∥[x1 − x∗x0 − x∗
]∥∥∥∥

2

. (16)
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One could be tempted to note that:

‖At‖2 ≤ ‖A‖t2, (submultiplocativity of norms, see [1], p. 4),

=
√
ρ(ATA)

t

, (Theorem 1, Appendix A),

where ρ(·) denotes the spectral radius.

Unfortunately, this result produces a diverging upper bound if combined into (16), since
√
ρ(ATA) > 1 (we do not

demonstrate this inequality here).

Thankfully, Theorem 4 (Appendix A) provides the means for obtaining the converging bound we seek.

This Theorem, when applied to matrix A and for a chosen constant ε > 0 (more on this later), provides that a norm,
denoted below ||| · |||, exists that verifies:

|||A||| ≤ ρ(A) + ε. (17)

Furthermore, following an argument in [1], page 7, the equivalence of the norms provides that there exists a constant
C > 0 for which:

‖M‖2 ≤ C|||M |||, ∀M ∈ Cn×n.

Hence

‖At‖2 ≤ C|||At|||,
≤ C|||A|||t, (submultiplicativity of norms, see [1], p. 4).

Use of (17) now yields

‖At‖2 ≤ C|||A|||t ≤ C (ρ (A) + ε)
t
,

which by combining back into (16) yields∥∥∥∥[xt+1 − x∗
xt − x∗

]∥∥∥∥
2

≤ C (ρ (A) + ε)
t

∥∥∥∥[x1 − x∗x0 − x∗
]∥∥∥∥

2

,∥∥∥∥[xt+1 − x∗
xt − x∗

]∥∥∥∥
2

= O
(
ρ (A)

t
+ εt

)
, ε > 0.

Since we can set ε � ρ (A), in practice we discard the term in ε for conciseness (although this is not absolutely
rigorous) and we obtain the following upper bound on the convergence rate:∥∥∥∥[xt+1 − x∗

xt − x∗
]∥∥∥∥

2

= O
(
ρ (A)

t
)
.

3.2 Robust region and optimal step size
If we write down the algebraic form of the determinant:

det(A) = λ1λ2 = µ (18)

we can observe that it is not dependent on γ and this gives an intuitive reason for the flatness of the convergence rate.
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We can now do an analysis of the spectral radius of the momentum operator A:

A =

[
1− γh+ µ −µ

1 0

]
(19)

Figure 6 shows the two distinct dynamics region induced by the discriminant:

∆ = tr(A)2 − 4det(A) (20)

We can observe that when ∆ > 0 we get two real eigenvalues and when ∆ < 0 we have two complex conjugate
eigenvalues (1−√µ)2

h ≤ γ ≤ (1+
√
µ)2

h . We can visualize this process in the figure 6, where we can see that the two
eigenvalues split at some point and become conjugate of each other and as such we enter a robust region where the
rate of convergence is ρ(A) =

√
µ. Also note that the width of the robust region is given by µ.

We can demonstrate this by explicitly computing the eigenvalues of our matrix:

λ1 =
1

2

(
1− γh+ µ+

√
(−γh+ µ+ 1)2 − 4µ

)
(21)

λ2 =
1

2

(
1− γh+ µ−

√
(−γh+ µ+ 1)2 − 4µ

)
(22)

When (−γh + µ + 1)2 − 4µ < 0, then the roots are complex conjugates, which implies the absolute values of the
eigenvalues are identical. Therefore:

|λ1| = |λ2| =
√

(1− γh+ µ)2 + |(−γh+ µ+ 1)2 − 4µ| = √µ (23)

Which implies the converge rate is the same and solely dependent on µ. This leads to the following lemma.

Lemma 1 (Robust Region). For some choice of γ, the absolute eigenvalues are identical and

ρ(A) =
√
µ

holds for a “robust region”, that is to say the convergence rate is constant for the range of γ where the discriminant
of the momentum operator A is less than 0.

Pipe
,

B
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4

Figure 6: Real and imaginary eigenvalues of the momentum operator A with varying learning rates, [3].

The images below depict the rate of convergence with respect to the curvature and the step size. We can note that
larger values of µ give larger widths for the robust region, but also larger rate of convergence.
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Figure 7: Convergence rates displaying robust regions as a function of learning rate and curvature for various momen-
tum sizes, [3].

Note that as we increase the width of the robust regions for the extreme curvatures, the point where the two regions
meet corresponds to the optimal step size. Consequently, this leads to the following optimal step size lemma.

Lemma 2 (Optimal γ, µ). The optimal step size γ is given by:

γ∗ =
(1 +

√
µ)2

hmax
=

(1−√µ)2

hmin
, (24)

from which the value of the optimal rate of convergence ρ can be derived as:

ρ∗ =
√
µ∗ =

√
κ− 1√
κ+ 1

≈ exp(− C√
κ

)

for large k

, (25)

where κ denotes the condition number κ = hmax

hmin
, and µ is the momentum coefficient
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A Spectral radius ρ(·) and operator norm ‖ · ‖
Definitions
Definition 1 (Operator Norm, [1], Def. 8). If ‖·‖ is a vector norm on Cn, then the induced norm ‖·‖ on Cn×n defined
by

‖A‖ , max
‖x‖=1

‖Ax‖

is a matrix norm on Cn×n.

Note that in that the notation ‖ · ‖ is overloaded in the above definition: it designates the vector norm for a vector
argument, and an operator norm for a matrix argument. In particular, we note ‖ · ‖q the operator norm induced by the
vector norm ‖ · ‖q , e.g.:

‖A‖1 , max
‖x‖1=1

‖Ax‖1,

‖A‖2 , max
‖x‖2=1

‖Ax‖2.

Definition 2 (Spectral Radius, [1], Sec. 3). The spectral radius of a matrix M ∈ Cn×n is given by:

ρ(A) , max {|λ|, λ eigenvalue of A}

Equality relations (for ‖ · ‖2 only)
Equality relations exist between the spectral radius and the matrix 2-norm specifically. These are cited here for
completeness as they are not used in the development of the convergence rate bound.

Theorem 1 ([1], Proposition 9).
‖A‖2 =

√
ρ(A∗A), ∀ A ∈ Cn×n.

This relation simplifies further if the matrix is hermitian symmetric.

Theorem 2 ([1], page 5).

‖A‖2 = ρ(A), ∀ A ∈ Cn×n and hermitian, i.e. for which A∗ = A.

Inequality relations
The following inequalities hold more generally. Note that the first one is cited for completeness: it is not used in the
development of the convergence rate bound. However the second one is.

Theorem 3 (Lower bound on operator norm, [1], Lemma 10).

ρ(A) ≤ ‖A‖, ∀ A ∈ Cn×n.

Theorem 4 (Upper bound on operator norm, [1], Lemma 11). Given A ∈ Cn×n and ε > 0, there exists a norm ‖ · ‖
such that

‖A‖ ≤ ρ(A) + ε.
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[6] J. Zhang, I. Mitliagkas, and C. Ré. Yellowfin and the art of momentum tuning. arXiv preprint arXiv:1706.03471,
2017.

10

http://www.math.drexel.edu/~foucart/ TeachingFiles/F12/M504Lect6.pdf
http://www.math.drexel.edu/~foucart/ TeachingFiles/F12/M504Lect6.pdf
http://distill.pub/2017/momentum
http://distill.pub/2017/momentum
http://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-5-slides.pdf
http://mitliagkas.github.io/ift6085-2019/ift-6085-lecture-5-slides.pdf

	Summary
	Convergence of gradient descent
	Polyak's momentum
	Convergence rate of Polyak's Momentum for a quadratic loss
	Robust region and optimal step size

	Spectral radius () and operator norm "026B30D  "026B30D 

