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1 Summary
Reinforcement learning is concerned with how software agents ought to take actions in an environment so as to
maximize some notion of cumulative reward. An optimal policy defines actions by which an agent achieves its goal of
maximizing its rewards in this environment. This lecture covers:

• Value iteration (compute states)

• Policy evaluation (expected return)

• Policy optimization (maximize expected return)

2 Basic definitions and assumptions
In this lecture, we consider state transitions and subsequent rewards induced by actions to have a Markov property:
given an action in a state, the reward and the new state are independent of other states and actions. We assume the
agent can be found in a finite set of states S with access to a set of actions A. Furthermore, we assume that rewards
are bounded: ∃M ∈ R such that ∀s, s′ ∈ S,∀a ∈ A,∀r > M,P (r, s′|s, a) = 0.

Definition 1 (Markov Decision Process). The probability of transitioning from state s ∈ S to the new state s′ ∈ S
with a reward r ∈ R+ given an action a ∈ A is yielded by the distribution:

P (r, s′|s, a)

This transition probability governs Markov Decision Process and this distribution models our interaction with the
environment. In case only part of the state is observed, we have a partially observed MDP (POMDP).

Definition 2 (Partially Observed Markov Decision Process). Observe some y from s:

y ∼ P (y|s)

Observation : To work with an POMDP we can convert it to an MDP by assembling states from cumulative partial
observations: s̃0 = {y0}, s̃1 = {y0, y1}, s̃2 = {y0, y1, y2}, etc...

As an agent traces a trajectory of states, its goal is to find a policy for taking actions that maximize the reward along
this trajectory.

Definition 3 (Policy). Actions a ∈ A are defined for a state s ∈ S with a policy:

π(a|s)

States a are sampled according to the probabilistic policy π(a|s). A policy is deterministic if a = π(s).
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Figure 1: Example where an agent traverses a frozen lake from a starting point (S) to a goal (G). Moving along the grid
has a 50% chance of moving in a move in a random direction. The lake grid is shown on the left and grid rewards are
on the right. The agent is rewarded 1 for reaching the goal, -1 for falling in a hole (gray circles, left), and 0 elsewhere.
Since an agent dies in a hole, this state is a sink state in that it no longer changes. One episode traces a trajectory from
the start to the goal or a sink state.

3 Value Iteration
A dynamic programming approach called value iteration computes an optimal MDP policy and its value. This re-
quires the computation of an expected return. Depending on the task, the expectation can be computed by dynamic
programming over a finite horizon (task ends) or an infinite horizon (task continues).

3.1 Finite Horizon
In the case of a finite horizon, the trajectory reaches the goal or sink state in a finite number of steps.

Definition 4 (State Value Function).

V πt (s) = E

[
t∑

τ=0

rτ |s0 = s

]

Here V πt (s) quantifies the expected return of a given a policy π(a|s) starting from state s and applying it for t steps,
where rτ are the reward variables for every step from 0 to t. Particularly, if we start with state s and take a as our very
first action we can give the following definition:

Definition 5 (State-Action Value Function).

Qπt (s, a) = E

[
t∑

τ=0

rτ |s0 = s, a0 = a

]

Definition 6 (Expected Return). For a trajectory with T steps and reward ri at each step i ∈ [1, ..., T ]:

E

[
T−1∑
i=0

ri + VT (sT )

]
,

To solve for the optimal policy and its value, we consider the state value function with the finite horizon expected
return:

V (s0) = max
π0

max
π1

...max
πT−1

E[r0 + r1 + ...+ rT−1 + VT (sT )]

Since for any i, ri is independent of πi+1, πi+2, ..., πT−1 (the reward does not depend of the decision we take in the
future), we can successively take the max out of the expectation and obtain:

V (s0) = max
π0

E[r0 + max
π1

E[r1 + ...+ max
πT−1

E[rT−1 + VT (sT )]]]

Here notice that each one of these expectations is an expectation for a specific randomness. As an example the above
series the last rT−1 is a random variable and it is the reward that we get for the state that we end up in after the action
dictated by policy πT−1. Therefore this expectation is with respect to randomness only that will appear starting at step
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T − 1 in future. So the first expectation maxπ0 E[r0 + ... is with respect to all randomness for the problem. Using
Fubini–Tonelli theorem we were able to move the integrals that appear in multiple expectations. To be able to do that
we assumed a regularity condition, i.e. our random variable rewards live in a compact space.
We can then solve by applying for i following {T, ..., 1}:

∀s ∈ S
πi−1(s) = argmax

a
(Esi [ri−1 + Vi(si)]

Vi−1(s) = max
a

(Esi [ri−1 + Vi(si)]

Algorithm 1 Finite Horizon Value Iteration
for t = T − 1, T − 2, .., 0 do

for s ∈ S do
πt(s), Vt(s) = maximize

a
(E[rt + Vt+1(st+1)])

end
end

3.2 Infinite Horizon
For some games we do not have a predetermined end time and the game can keep going forever. Therefore finite
horizon algorithms do not apply to these cases. Also in real life problems one usually has the following situation: it is
better to find a good solution soon then to find a great solution much later. For these two reasons one would need to
have the case of an infinite horizon where future rewards are increasingly discounted (reward is bounded).

Definition 7 (State Value Function).

V πt (s) = E

[
t∑

τ=0

γτrτ |s0 = s

]

Here the γ is called the discount factor and its value (0 < γ < 1) determines how much we care about future rewards.

Definition 8 (State-Action Value Function).

Qπt (s, a) = E

[
t∑

τ=0

γτrτ |s0 = s, a0 = a

]

Definition 9 (Expected Return). For a trajectory with T steps and reward ri at each step i ∈ [1, ..., T ]:

E

[ ∞∑
i=0

γiri

]
,

Observation : We can interpret the rewards in a discounted setting as the non-discounted rewards from an MDP, by
adding a sink state s̃ that traps the agent indefinitely with reward 0, and using the transition:

P̃ (s′|s, a) =

{
P (s′|s, a) with probability γ
s̃ with probability 1− γ
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Algorithm 2 Infinite Horizon Value Iteration

Initialize V (0) arbitrarily
for n = 0, 1, 2, ... until termination condition do

for s ∈ S do
π(n+1)(s), V (n+1)(s) = maximize

a
(Es′∼P (s′|s,a)[r + γV n(s′)])

end
end

There is a fundamental difference between infinite horizon and the finite horizon cases. When we have the finite
horizon version of the problem we impose the boundary conditions. Then it makes a big difference if we are near the
beginning of the game or end of the game. Therefore our optimal policy changes from each time step. But for the
infinite horizon version of the problem, there is no end point and no sense of absolute time. Hence an optimal policy
is always optimal no matter how far we are in the game.

Theorem 10. By assuming a horizon T ∈ N, an infinite horizon value iteration problem can be converted into a finite
horizon one with error bounded by:

ε ≤ rmax
γT

(1− γ)

Proof.

inf∑
t=T

γrt ≤
inf∑
t=T

γrmax

=

inf∑
t=0

γrmax −
T∑
t=0

γrmax

= rmax

(
1

1− γ
− 1− γT

1− γ

)
Geometric series.

= rmax
γT

1− γ

Since we are dealing with discounted rewards where γ < 1, we can interpret a value iteration update as application of
an operator that has a fixed point to which iteration converges at the limit.

Definition 11 (Backup Operator).
T : R|S| → R|S|

[T V ](s) = max
a

Es′,r|s,a[r + γV (s′)]

Using the above definition, we will be able to express one iteration of the infinite horizon algorithm as an operator
acting on a state value function. With the help of operator algebra, one can also show the following: If we have two
state value functions V and W and we apply the same T operator to both of them. Then the new state value functions
T V and TW are closer compared to V and W .

Theorem 12. Backup operator T is a contraction with modulus γ under∞-norm

||T V − TW ||∞ ≤ γ||V −W ||∞

Finally we can show that repeated application of the operator T will always converge state value function.
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Theorem 13. The backup operator T has a fixed point V ∗ and :

(T iV ) →
i→∞

V ∗

Proof : This is a direct consequence of Theorem 12 and Banach’s Fixed Point theorem.

We can then rewrite Algorithm 2 in a cleaner manner:

Algorithm 3 Infinite Horizon Value Iteration with operator

Initialize V (0) arbitrarily
for n = 0, 1, 2, ... until termination condition do

V (n+1) = T V (n)

end

4 Policy Evaluation and Iteration
While value iteration allows us to evaluate the return from states according to the optimal policy, policy iteration seeks
to update each policy to increase the expected return. We again use a backup operator but this time without maximiz-
ing over actions.

Definition 14 (Backup Policy Operator).
T π : R|S| → R|S|

[T πV ](s) = Es′|s,a∼π(s)[r + γV (s′)]

Instead, we evaluate the expected return for every state, induced by each policy, and then select the actions that
maximize the expected return for that policy. We obtain the state valuation induced by π by using V ∗ = T πV ∗. This
induces a linear equation that can be solved exactly for policy evaluation:

V (s) =
∑
s′

P (s′|s, a ∼ π(s))[r(s, a, s′) + γV (s′)]

Policy iteration is then performed by alternating between policy evaluation for each policy π and a greedy update of
the policies actions:

Algorithm 4 Policy Iteration

Initialize π(0) arbitrarily
for n = 1, 2, ... do

V π
(n−1)

= Solve[V = T π(n−1)

V ] π(n) = argmax
a

(Es′|s,a[r + V π
(n−1)

(s′)])

end

Note that for a finite MDP, Algorithm 4 should converge in a finite number of iterations since the number of policies is
finite [2]. The optimization of the expected reward can be seen as solving the bellman’s equation for an utility function
V, that is described below. We have that for an infinite-horizon decision problem, the value function V (s0) reaches
equilibrium when the Bellman’s equation is satisfied.

Definition 15 (Bellman’s equation).

V (s0) = max
a∞t=0

∞∑
t=0

γtF (st, at)

Where F (at, st) defines the expected reward of a state-action pair, submitted to constraints st+1 ∼ π(st, at) and
discount factor 0 < γ < 1.
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Figure 2: Iterates of the simplest contraction mapping f(x) = αx with α ≤ 1 (here, α = 0.5) at starting point x0 = 1
tend toward the fixed point f(x) = x at (0, 0). Green: the line f(x) = x. Blue: the contraction mapping f(x) = 0.5x,
respecting d(0.5x, 0.5y) ≤ 0.5d(x, y) with d(x, y) = |y − x|. Points: iterates of f(x) with x0 = 1.

Note that V is a function of the optimal sequence of actions a∞t=0 as well as the optimal/maximal value of the reward
allowed by the environment. We will see that this is equivalent to solving a function with a singular fixed point. Ad-
ditionally, this equation is an algorithm in itself to compute the reward and can be easily translated into code.

In the next sections, we will analyze what happens when the whole distribution of rewards is considered rather than
just the expected reward, a setting called distributional RL.

5 Banach Fixed Point Theorem
In this section we discuss a central theorem in the analysis of RL algorithms: the Banach fixed point theorem1.
The Banach fixed point theorem gives convergence guarantees to a unique fixed point under iterated contraction map-
pings. Thus, if the update equation of an RL algorithm can be shown to be a contraction mapping, it will eventually
converge. Moreover, regardless of initial values, convergence leads to the same fixed point (per uniqueness).

Definition 16 (Contraction Mapping). Let (X, d) be a metric space with metric d on space X . Then a function
T : X → X is a contraction mapping on X if there exists q ∈ [0, 1) such that

∀x, y ∈ X : d(T (x), T (y)) ≤ qd(x, y)

Definition 16 is reminiscent of the definition of L-Lipschitz functions. Indeed, a contraction mapping is simply an
L-Lipschitz function (where the image is a subset of the domain) for some L ∈ [0, 1). That is, beyond restricting the
maximum growth rate of the function, we also have that the function must grow arbitrarily slower as the function is
repeatedly applied to its images. Figure 2 illustrates iteration of the contraction mapping f(x) = 0.5x.

Theorem 17 (Banach Fixed Point Theorem). Let (X, d) be a non-empty complete metric space with a contraction
mapping T : X → X , then T admits a unique fixed point x∗ ∈ X . Moreover, for any x0 ∈ X , Tn(x0) → x∗ as
n→∞

Proof. Let x0 ∈ X be an arbitrary point and let {xn} be the sequence of iterates such that ∀n ∈ N+, xn = T (xn−1).
Then we have

d(xn+1, xn) ≤ qd(xn, xn−1)

≤ . . .
≤ qnd(x1, x0)

1The derivations and proofs are mostly taken from Wikipedia [3]
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Let m,n ∈ N+ such that m > n, then, because (X, d) is a metric space and T is a contraction mapping on X ,

d(xm, xn) ≤ d(xm, xm−1) + . . .+ d(xn+1, xn)

≤ qm−1d(x1, x0) + . . .+ qnd(x1, x0)

= qnd(x1, x0)

m−n−1∑
k=0

qk

≤ qnd(x1, x0)

∞∑
k=0

qk

=
qn

1− q
d(x1, x0)

For some arbitrary ε, since q ∈ [0, 1), there is some N such that

qN <
ε(1− q)
d(x1, x0)

Choosing m,n > N gives

d(xm, xn) ≤ qn

1− q
d(x1, x0) <

ε(1− q)d(x1, x0)

(1− q)d(x1, x0)
= ε

Thus, {xn} is a Cauchy sequence with a limit x∗ ∈ X , and it is a fixed point of T because

x∗ = lim
n→∞

xn

= lim
n→∞

T (xn−1)

= T ( lim
n→∞

xn−1) Valid because T is continuous

= T (x∗)

Finally, it can be shown by contradiction that the fixed point is unique. Suppose there exists p1, p2 ∈ X such that
p1 6= p2 and p1 and p2 are fixed points of T . Then

d(T (p1), T (p2)) = d(p1, p2) ≤ qd(p1, p2)

⇐⇒ q = 0 q ∈ [0, 1)

=⇒ d(p1, p2) ≤ 0

Since d(p1, p2) ≥ 0 by definition, this implies d(p1, p2) = 0 =⇒ p1 = p2, which is a contradiction.

Theorem 17 tells us that given any point x0 ∈ X , repeated application of the contraction mapping not only leads to
convergence, but also converges to the unique fixed point x∗ ∈ X . This will be used in the next section to demonstrate
convergence of distributional RL.

6 Distributional RL
Distributional Reinforcement Learning was first introduced in Bellemare et al. [1]. We will discuss it in the context of
infinite horizon. First we define The following are all the random variables involved in the MDP:

1. rt, st ∼ P(·, · |st−1, at−1) (non-deterministic reward and transition)

2. at ∼ π(· |st−1) (non-deterministic policy)

Using these variables, we can define what is known as the return:
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Definition 18 (Return). Let (st, at)
∞
t=1 be the state-action pairs of an infinite horizon MDP with a discount factor

0 < γ ≤ 1. The return is defined as

Φπ(s, a) = r0 +

∞∑
t=1

γtrt with s0 = s and a0 = a (1)

which is a function that takes an initial state and action pair as input and output a random variable on the initial state
and action.

As return, Φπ(s, a), is a random variable, it has a law, or a distribution. Let D denote the space of all distributions
of return. We define the value distribution as a mapping from the state-action space to the space of distributions of
return below.

Definition 19 (Value Distribution). Then we define the value distribution as

Zπ : S ×A → D

such that
Φπ(s, a) ∼ Zπ(s, a)

D|S|×|A|. Since Zπ(a, s) is a distribution, we can write in the discrete case

P (Φ = φ) = Zπ(a, s)(φ)

It is important to understand that for given a and s, Φπ(s, a) is a random variable and Zπ(s, a) is the distribution of
that random variable. The return and value distributions are linked to the state-action value function described last
lecture via the formula

Qπ(s, a) := EZπ(s,a)[Φ(s, a)] (2)

φ (return)

probability

Zπ(a, s)(φ)

Qπ(a, s)

Figure 3: example of distribution Zπ(a, s)(φ)

But why would we want to use the distribution instead of its expectation. The problem with expectation is that we lose
information about the random variables.

For example lets take two dice (A, B) and play a game. The user must choose a die and throw it once. If die A lands
on an even number, the player gets 1 dollar and he loses 1 otherwise. If die B land on 1, 2, 3, 4, 5 he gets 20 dollars and
loses 100 dollars if it lands on 6. Both dice have an expectation of 0, but the two choices involve different levels of risk
as they have different distributions. This risk cannot be characterized by simply looking at the expectation because
both dice are indistinguishable in the sense of expectation, which does not reflect the other statistics of the distribution
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(such as variance).

Before anything else, we define some algebraic operations between distributions:

Definition 20. Let Z1, Z2 be two independant univariate distributions and let γ ∈ R be a constant We define:

1. (Z1 + Z2)(x) := (Z1 ∗ Z2)(x) ( convolutionnal product)

2. (γ Z1)(x) := 1
γZ1(γx) (contracting the function horizontally)

3. (γ + Z1)(x) := Z1(x− γ) (horizontal translation)

Now we turn to policy evaluation using distributional RL. The policy π is fixed and we want to find the value distribu-
tion Zπ(s, a) for a given (s, a) pair. First we define the transition operator:

Definition 21 (Transition Operator).
Pπ : D → D

PπZ(s, a) = Z(S′, A′) (3)

where S′ ∼ P (.|s, a) and A′ ∼ π(.|S′). Capital letter are used to emphasize the randomness of the new state and
action.

The output of this operator can be seen as a mixture distribution with weight P (S′ = s′, A′ = a′|a, s) for the each
component distribution Zπ(s′, a′). In what follows, we assume the randomness in the reward and the transition Pπ

are independent. Another operator that we define below is the distributional Bellmann operator:

Definition 22 (Distributional Bellmann operator).

T π : D → D

T πZ(s, a) = Distr(r) + γPπZ(s, a) (4)

where Dist(r) is the distribution of rewards at a given state s and by doing the action a. We could also change the
input and output spaces of the operator so it acts on random variables instead of their distributions

T πΦπ
′
(s, a)

D
= r + γPπΦπ

′
(s, a) (5)

These two definitions are equivalent (in the sense of distribution).

Here is a graphical explanation of the operator with deterministic reward:

PπZπ(s, a) γPπZπ(s, a)

r(a, s) + γPπZπ(s, a)

Figure 4: Illustration of how T π operates on a distribution

The final operation is simply a translation because r is deterministic in that example. In a more general case, the right-
most distribution would have been obtained with a convolutional product. It is important to note that T π resembles
the Bellman equations for expected reward. In the spirit of policy evaluation, we want to show that the operator is a
contraction mapping with respect to some metric. Let’s first introduce the Wasserstein metric between distributions.

9



IFT 6085 - Theoretical principles for deep learning Lecture 19: April 15, 2020

Definition 23. Let Z1 and Z2 be two distributions; i.e. Z1, Z2 ∈ D. For p ≥ 1, the p-Wassertein metric is defined as

dp(Z1, Z2) = inf
D∈

∏
(Z1,Z2)

E(z1,z2)∼D[||z1 − z2||pp]
1
p (6)

where
∏

(Z1, Z2) is the set of all joint distributions with marginals Z1 and Z2. The metric has the following properties
(for γ ∈ R and a, a random variable independent of z1 and z2 that follows distribution A):

1. dp(γZ1, γZ2) ≤ |γ|dp(Z1, Z2)

2. dp(A+ Z1, A+ Z2) ≤ dp(Z1, Z2)

3. dp(AZ1, AZ2) ≤ ||a||pdp(Z1, Z2)

Note that the Wasserstein metrics are metrics of distributions, whereas value distributions are mappings (from the
space of state-action pairs to the space of distributions), the former are not yet metrics of the latter. Let Z denote the
space of value distributions (with bounded moments). Let us define a uniform form of the Wasserstein distance as

d̄p(Z1, Z2) = sup
s,a

dp(Z1(s, a), Z2(s, a))

for Z1, Z2 ∈ Z . Then we can establish the following result. d̄p is a metric over value distributions. The only
nontrivial part to prove is triangle inequality of a metric.

Proof. For Y ∈ Z , we have

d̄p(Z1, Z2) = sup
s,a

dp(Z1(s, a), Z2(s, a))

≤ sup
s,a

dp(Z1(s, a), Y (s, a)) + dp(Y (s, a), Z2(s, a))

≤ sup
s,a

dp(Z1(s, a), Y (s, a)) + sup
s,a

dp(Y (s, a), Z2(s, a))

= d̄p(Z1, Y ) + d̄p(Y, Z2)

where the first inequality is because dp is a metric which admits triangle inequality over the space of distributions.

Now consider the metric space (Z, d̄p). Considering the iterative process Zk+1 := T πZk with some initial value
distirbution Z0 ∈ Z , we now show that “distributional” Bellman operator is a contraction mapping. T π : Z → Z is
a γ-contraction in d̄p.

Proof. Let Z1, Z2 ∈ Z .

d̄p(T π(Z1), T π(Z2)) = sup
s,a

dp(T π(Z1), T π(Z2))

= sup
s,a

dp(Distr(r; s, a) + γPπZ1(s, a), Distr(r; s, a) + γPπZ2(s, a))

≤ sup
s,a

γdp(P
πZ1(s, a), PπZ2(s, a))

≤ sup
s,a

γ sup
s′,a′

dp(Z1(s′, a′), Z2(s′, a′))

= γd̄p(Z1, Z2)

where the first two lines are just the definitions of d̄p and T π; the third line is due to the properies of Wasserstein
distance (Definition 23) and the (conditional) independence of reward and the transition; the fourth line is due to
taking the sup rather than taking a random next state-action pair.

By construction, Zπ is a fixed point of the Bellman equation, and by the Banach fixed point theorem, the sequence
(Zk)k≥1 will converge in d̄p to Zπ .
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7 Summary
In this lecture, we saw the infinite horizon variant of RL. We introduced the Banach fixed point theorem, a central theo-
rem to many convergence results in and outside RL algorithms, and used it to demonstrate convergence for distributed
RL methods.
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