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1 Summary
Consider the one hidden layer multilayer perceptron with identity output activation function f(x) = W(2)σ(W(1)x)
where σ could be a non linear activation function. A standard way to ensure that f is a good mapping from the input
x ∈ X to the output y ∈ Y is to optimize (e.g. via SGD) W(1) and W(2) such that they minimize the empirical
risk. Now consider drawing W(1) from some distribution p(W) and optimizing the empirical risk over W(2) only. In
this setup, we have f(x) = W(2)φ(x; W(1)) where φ is a deterministic feature map that is initialized randomly. The
authors in [1] showed that even if the parameter of the feature map are not optimized, minimizing the empirical risk
with respect to W(2) returns a function whose true risk is near the lowest true risk attainable by an infinite-dimensional
class of functions Fp defined as below:

Fp ≡
{
f(x) =

∫
Ω

α(ω)φ(x;ω)dω
∣∣ |α(ω)| ≤ Cp(ω)

}
(1)

where p(ω) is the distribution from which W(1) was drawn.

2 Introduction
Given a set of training data in a domain {x(i), y(i)}i=1,...,m, x(i) ∈ X , y(i) ∈ {−1, 1} the goal is to learn the mapping
f : X 7→ Y that minimizes the empirical risk

R̂S [f ] =
∑

(x,y)∈S

l (h(x), y) (2)

where l is a loss function that specifying the penalty assign to the deviation between the prediction f(x) and the ground
truth y and S ⊂ (X × Y).

Similarly to kernel machines, we will consider functions of the form

f(x) =
∑
i

α(ωi)φ(x;ωi)dω (3)

if {ωi} is a discrete set, or

f(x) =

∫
α(ω)φ(x;ω)dω (4)
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if ω is continuous. The function φ : X 7→ R is a feature map parametrized by some vector ω ∈ Ω that is weighted by
a function α : Ω 7→ R. Let ω∗,α∗ be the vectors of weights that minimize the empirical risk, i.e.

ω∗,α∗ = arg min
ω1,...,ωK∈Ω, α1,..,αK∈A

R̂S

[
K∑
k=1

φ(x;ωk)αk

]
(5)

A standard approach in machine learning is to use some optimization procedure to approximate ω∗ and α∗. However,
the authors propose less orthodox way approximate the empirical risk minimizer; instead of optimizing w.r.t ω and α,
draw ω from some distribution p(ω) and optimize over α only. Algorithm (1) describe the procedure.

Algorithm 1 The Weighted Sum of Random Kitchen Sinks fitting procedure

Input: A dataset {x(i), y(i)}i=1,...,n

Input: A bounded feature function |φ(x;ω)| ≤ 1
Input: K ∈ N
Input: C ∈ R
Input: A probability distribution p(ω)

Output: A function ĥ(x) =
∑K
k=1 φ(x;ωk)αk

Draw ω ∈ RK from p(ω)
Featurize the input: z(i) ← φ(x(i);ω)
With ω fixed, solve the empirical risk minimization problem

α∗ = arg min
α∈RK

1

n

n∑
i=1

l
(
α>z(i), y(i)

)
(6)

s.t ||α||∞ ≤ C/K.

The following theorem (1) states that algorithm (1) has low true risk. The true risk R[h] is defined as the expected
loss on points drawn from the data distribution D.

R[f ] = E(x,y)∼Dl(f(x), y) (7)

More specifically, theorem (1) states Algorithm (1) returns a function whose true risk is near the lowest true risk
attainable by an infinite-dimensional class of functions Fp defined below:

Theorem 1. (Main result) Let p be a distribution on Ω, and let φ satisfy supx,w |φ(x;w)| ≤ 1 (uniformly bounded).
Define the hypothesis set as follows:

Fp ≡
{
f(x) =

∫
Ω

α(ω)φ(x;ω)dω
∣∣ |α(ω)| ≤ Cp(ω)

}
(8)

Suppose the loss function is as below l(y, y
′
) = l(yy

′
), with l(yy

′
) L-Lipschitz. Then for any δ > 0, if the training

data {xi, yi}i=1···m are drawn i.i.d from some distribution P , Algorithm 1 returns a function f̂ that satisfies

R[f̂ ]− min
f∈Fp

R[f ] ≤ O
{((

1√
m

+
1√
K

)
LC
√

log 1/δ

)}
with probability at least 1− 2δ over the training dataset and the choice of the parameters ω1, · · · , ωK .

C is arbitrarily chosen and can be considered as a regularizer. The term p(w) can be viewed as a distribution over the
weights we’re considering. By having a low probability over less desirable weights, the |α(ω)| ≤ Cp(ω) condition
upper bounds the value of the weights α(wi) to their probability p(wi), rescaled by a constant C. The hypothesis set
Fp is quite rich. It consists of functions whose weights α(ω) decays more rapidly than the given sampling distribution
p.
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3 Steps to prove the Main Theorem
Algorithm 1 returns a function that lies in the random set:

F̂ω ≡
{
f(x) =

∫
Ω

α(ω)φ(x;ω)dω
∣∣ |α(ω)| ≤ C/K

}
We are going to see how much we loose by going from Fp to F̂ω .
The upper bound in the main theorem can be decomposed in a standard way into two bounds:

• An approximation error bound that shows that the lowest true risk attainable by a function in F̂ω is not much
larger than the lowest true risk attainable in Fp (Lemma 3).

• An estimation error bound that shows that the true risk of every function in F̂ω is close to its empirical risk
(Lemma 4)

Before going further, we introduce the following lemma which will be helpful later on to prove the bound on the
approximation error. It which states that the average bounded vectors in Hilbert space concentrates towards its expec-
tation in the Hilbert norm exponentially fast.

Lemma 1. (Taken from Lemma 2.4 in [1]) Let X = x1, ..., xK be i.i.d. random variables in a ball H of radius M
centered around the origin in a Hilbert space. Denote their average by X̄ = 1

K

∑K
k=1 xk. Then, for any δ > 0, with

probability 1− δ,

||X̄] − E[X̄]|| ≤ M√
K

(1 +
√

2 log 1/δ)

The following Lemma is also helpful in bounding the approximation error:

Lemma 2. Let µ be a measure on X , and f∗ a function in Fp. If ω1, · · · , ωK are drawn i.i.d from p, then for any
δ > 0, with probability at least 1− δ over ω1, · · · , ωK , there exists a function f̂ ∈ Fω so that√∫

X

(
f̂(x)− f∗(x)

)2

dµ(x) ≤ C√
K

(
1 +

√
2 log 1/δ

)

Proof. We can write f∗(x) =
∫

Ω
α(ω)φ(x;ω)dw, since f∗ ∈ Fp. Given βk ≡ α(ωk)

p(ωk) , we construct the following
function:

fk = βkφ(·;ωk)

with k = 1, ...,K, such that

Eωk
[fk] =

∫
βkφ(·;ωk)p(ωk)dωk

=

∫
α(ωk)

p(ωk)
φ(·;ωk)p(ωk)dωk

=

∫
α(ωk)φ(·;ωk)dωk

= f∗.

The last step is obtained by the definition of f∗. It tells us that by expectation, the random function fk is part of the
hypothesis set Fp. Consider the empirical average f̂(x) =

∑K
k=1

βk

K φ(x;ωk) over K instances of fk. Re-writing
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our weight value condition found in the definition of the hypothesis set Fp, we have that |α(ω)|
p(ω) ≤ C. Therefore,

f̂ ∈ F̂ω since |βk

K | = |
α(ω)
p(ω)K | ≤

C
K .

We’ll use Lemma 1 to finish the proof. To do so, we need to make sure the random variables fk are in a ball of
radius C, i.e. the norm of the random variables is below C. Using ||x|| =

√
〈x, x〉 and re-writing the inner product

〈 f, g〉 =
∫
f(x)g(x)dµ(x), we have

||fk|| =
√
〈 fk, fk〉 =

√∫
fk(x)fk(x)dµ(x)

=

√∫
β2
kφ

2(·;ωk)dµ(x)

= |βk|

√∫
φ2(·;ωk)dµ(x) (Since βk is independent of x)

≤ |βk|

√∫
1dµ(x) (Since φ2(·;ωk) ≤ 1)

= |βk|
≤ C

Where the square root is simplified to 1 because we’re integrating a probability distribution over it’s whole domain,
giving 1. Therefore, we have ||fk|| ≤ C, and we can apply Lemma 1, concluding the proof.

Lemma 3. (Bound on the approximation error) Suppose l(y, y
′
) is L-Lipschitz in its first argument. Let f∗ be a

fixed function in Fp. If ω1, · · · , ωK are drawn i.i.d from p, then for any δ > 0, with probability at least 1 − δ over
ω1, · · · , ωK , there exists a function f̂ ∈ F̂ω that satisfies

R[f̂ ] ≤ R[f∗] +
LC√
K

(
1 +

√
2 log 1/δ

)

Proof. For any two functions f and g, the Lipschitz condition on l followed by the concavity of square root gives

R[f ]−R[g] = E[l(f(x), y)− l(g(x), y)] ≤ E[|l(f(x), y)− l(g(x), y)|]

≤ L E[|f(x)− g(x)|] ≤ L
√
E(f(x)− g(x))2

The proof is then obtained by applying Lemma 2.

Notice the
√
K denominator term in the right side of the lemma’s inequality. It tells us that the upper bound on

the approximation error decays as we increase the number of random features K considered. Using more features is
computationally more demanding and extends training runtime, but rewards us by decreasing the error’s upper bound.
A standard result from statistical learning theory states that for a given choice of ω1, · · · , ωK the empirical risk of
every function in F̂ω is close to its true risk. The following lemma can be proven by using Holder inequality.

Lemma 4. (Bound on the estimation error). Suppose l(y, y
′
) = l(yy

′
), with l(yy

′
) L-Lipschitz. Let ω1, · · · , ωK be

fixed. If {xi, yi} i = 1 · · ·m are drawn i.i.d from a fixed distribution, for any δ > 0, with probability at least 1− δ
over the dataset, we have

∀f̂ ∈ F̂ω
∣∣R[f ]− R̂[f ]

∣∣ ≤ 1√
m

(
4LC + 2|c(0)|+ LC

√
1

2
log 1/δ

)
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No we are ready to give a sketch of the proof of main theorem by using the above lemmas.

Proof of theorem 1. Let f∗ be a minimizer of the true risk R over Fp, f̂ be a minimizer of the empirical risk R̂ over
F̂ω (i.e. f̂ is the output of Algorithm 1), and f̂∗ be a minimizer of the true risk R over F̂ω (i.e. f̂∗ is the optimal
output of Algorithm 1). Then

R[f̂ ]−R[f∗] =R[f̂ ]−R[f̂∗] + R[f̂∗]−R[f∗] (9)

≤|R[f̂ ]−R[f̂∗]|+ R[f̂∗]−R[f∗] (10)

Let εest denote the upper bound of the right side of the inequality in Lemma 4:

εest =
1√
m

(
4LC + 2|c(0)|+ LC

√
1

2
log 1/2

)

With probability at least 1− δ we have

|R[f̂ ]−R[f̂∗]| =|R[f̂ ] + R̂[f̂∗]− R̂[f̂∗]−R[f̂∗]|

≤|R[f̂ ] + R̂[f̂∗]− R̂[f̂ ]︸ ︷︷ ︸
≥0

−R[f̂∗]| (By optimality of f̂ )

≤|R[f̂ ]− R̂[f̂ ]|+ |R[f̂∗]− R̂[f̂∗]|
≤2εest (By Lemma 4)

Let εapp denote the right term in the upper bound of the inequality in Lemma 3:

εapp =
LC√
K

(
1 +

√
2 log 1/δ

)
Also note that R[f̂∗] < R[f̂ ] since f̂∗ minimize the true risk over Fω . Using this fact we have that with probability at
least 1− δ the following inequality hold

R[f̂∗]−R[f∗] ≤R[f̂ ]−R[f∗] (f̂∗ minimize R over Fω)
≤εapp (Lemma 3)

Hence

R[f̂ ]−R[f∗] ≤ 2εest + εapp, (11)

and we get the desired result.
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