
IFT 6085 - Lecture 12
Generative models

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes Instructor: Ioannis Mitliagkas
Winter 2019: Stephan Tran & Shawn Tan
Winter 2018: Nicolas Gagné

1 Summary
In this lecture we introduce generative models. We start by contrasting the discriminative vs generative paradigm with
an example. We then introduce a generative model – the Gaussian Discriminant Analysis model – and demonstrate that
it reduces to its discriminative counterpart: logistic regression. Having done so, we will have learned a lesson: gener-
ative models require stronger assumptions than discriminative models. When our assumptions are correct, generative
models perform better than discriminative models, but if our assumptions are wrong, they may perform much worse
than their more robust discriminative counterpart. Next, we make a further distinction among generative models: those
with a prescribed explicit specification and those where the distribution is implicit and induced by a procedure. We
conclude this lecture by introducing an example of implicit generative models—generative adversarial networks.

2 Discriminative vs Generative models
In this section, we introduce generative models by contrasting them with discriminative models. We start with an
example drawn from Andrew Ng online notes [3].
We consider a classification problem in which we want to learn to distinguish between elephants (y = 1) and dogs
(y = 0), based on some features of an animal. Given a training set, an algorithm like logistic regression tries to find
a straight line that separates the elephants from the dogs. In order to classify a new animal, we just check on which
side of the boundary it falls, and make our prediction accordingly. This approach corresponds to what is known as a
discriminative model; a discriminative model tries to directly learn a (possibly stochastic) mapping p(y|x) from the
space of input X to the labels {0, 1}.
Here’s a contrasting approach. First, looking at elephants, we build a model of what elephants look like. Similarly,
looking at dogs, we build a separate model of what dogs look like. Now, in order to classify a new animal, we match
the new animal against the elephant model, and match it against the dog model. We predict according to whether
the new animal looks more like the elephants or more like the dogs we have seen in the training set. This approach
corresponds to what is known as a generative model; a generative model tries to learn p(x|y) and p(y). In our case
where y indicates whether an example is a dog (0) or an elephant (1), we have that p(x|y = 0) models the distribution
of dogs’ features, and p(x|y = 1) models the distribution of elephants’ features. After modelling p(y), called the class
priors, and p(x|y), our algorithm can then use Bayes rule to derive the posterior distribution on y given x:

p(y|x) =
p(x|y)p(y)

p(x)
=

p(x|y)p(y)∑
y p(x|y)p(y)

.

We will explore the generative cousin of logistic regression in the next section.

1

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 21, 2019

Discriminative Generative
Weaker assumptions Stronger assumptions
More robust Better / faster fit when assumptions are correct
More widely used for classification Can perform badly

Table 1: A summary of properties of discriminative and generative techniques.

3 Gaussian Discriminant Analysis
In Gaussian Discriminant Analysis, we assume that p(x|y) is distributed according to a multivariate normal distribu-
tion. We recall the definition of the multivariate normal distribution.

Definition 1 (Multivariate normal distribution). Given a mean vector µ ∈ Rn and a covariance matrix Σ ∈ Rn×n,
where Σ ≥ 0 is symmetric and positive-definite, then the multivariate normal distribution N (µ,Σ) is defined by its
density:

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

3.1 The Gaussian Discriminant Analysis model
The Gaussian Discriminative Analysis (GDA) model has parameters φ, Σ, µ0 and µ1 as follows:

y ∼ Bernouilli(φ)

p(x|y = 0) ∼ N (µ0,Σ)

p(x|y = 1) ∼ N (µ1,Σ)

Writing out the distributions, this is:

p(y) = φy(1− φ)1−y

p(x|y = 0) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ0)TΣ−1(x− µ0)

)
p(x|y = 1) =

1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)
Note that although we have distinct mean vectors µ0 and µ1, we have the same covariance matrix Σ. In terms of our
dogs (0) and elephants (1) example above, these parameters can be interpreted as:

• φ is the proportion of elephants in our population, whereas 1− φ is the proportion of dogs.

• The elephants and dogs features are generated according to a multivariate normal centered at µ1 and µ0, respec-
tively. Both multivariate normals have the same variance, so this implies that features for both animals have a
similar spread; an assumption that might not quite hold if we haven’t normalized the features (for instance, the
animal’s weight and height).

Remember that we train generative models by building a model of what elephants look like and of what dogs look
like. We do so by finding the parameters that maximize the log-likelihood of our data (the observed animals). Given a
training set S :=

(
(x(1), y(1)), . . . , (x(m), y(m))

)
, the log-likelihood of GDA for S is

`(φ, µ0, µ1,Σ) = log

m∏
i=1

p
(
x(i), y(i);φ, µ0, µ1,Σ

)
= log

m∏
i=1

p
(
x(i)|y(i);µ0, µ1,Σ

)
p
(
y(i);φ

)

2

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 21, 2019

Maximizing the log-likelihood and we get

φML =
1

m

m∑
i=1

1(y(i)=1)

µML
0 =

∑m
i=1 1(y(i)=0)x

(i)∑m
i=1 1(y(i)=0)

µML
1 =

∑m
i=1 1(y(i)=1)x

(i)∑m
i=1 1(y(i)=1)

ΣML =
1

m

m∑
i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T
Now that we have captured what an elephant and what a dog should look like, if we are given a new animal x to
classify, we can predict according to whether it looks more like an elephant or more like a dog, i.e., we return

arg max
y∈{0,1}

p
(
y|x;φML, µML

0 , µML
1 ,ΣML

)
which can be computed directly by

arg max
y∈{0,1}

p
(
x|y;µML

0 , µML
1 ,ΣML

)
p(y;φML).

We next show that a GDA model can be reduced to logistic regression.

3.2 GDA model and logistic regression
We will argue that if p(x|y) is a multivariate gaussian, then p(y|x) necessarily follows a logistic function. More
precisely:

Theorem 2. Given a Gaussian Discriminant Analysis model, the quantity p(y = 1|x;φ, µ0, µ1,Σ), seen as a function
of x, can be expressed in the form

p(y = 1|x;φ,Σ, µ0, µ1) =
1

1 + exp(−θTx+ b)
,

where θ and b are some appropriate functions of Σ, µ0, µ1 and φ.

Proof.

p(y = 1|x) =
p(x|y = 1)p(y = 1)

p(x)
(1)

=
p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)
(2)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

. (3)

Where we get (1) by definition of conditional probability and (2) by the law of total probability. Taking a closer look

3

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 21, 2019

at

p(x|y = 0)p(y = 0)

p(x|y = 1)p(y = 1)

= exp

(
− (x− µ0)TΣ−1(x− µ0)

2
+

(x− µ1)TΣ−1(x− µ1)

2

)
1− φ
φ

= exp

(
−
xTΣ−1x− 2

(
µT0 Σ−1x

)
+ µT0 Σ−1µ0

2
+
xTΣ−1x− 2

(
µT1 Σ−1x

)
+ µT1 Σ−1µ1

2

)
1− φ
φ

= exp

(
2
(
µT0 Σ−1x

)
− µT0 Σ−1µ0 − 2

(
µT1 Σ−1x

)
+ µT1 Σ−1µ1

2

)
1− φ
φ

= exp

(
2(µ0 − µ1)TΣ−1x− (µ0 − µ1)TΣ−1(µ0 + µ1)

2

)
exp

(
log

(
1− φ
φ

))

= exp

(µ0 − µ1)Σ−1︸ ︷︷ ︸

θ

T

x+

(
− (µ0 − µ1)TΣ−1(µ0 + µ1)

2
+ log

(
1− φ
φ

))
︸ ︷︷ ︸

b

 = exp
(
θTx+ b

)
.

So we can indeed write

p(y = 1|x;φ,Σ, µ0, µ1) =
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp (θTx+ b)
,

as desired.

We just argued that if p(x|y) are multivariate normals with shared Σ, then p(y = 1|x; θ,Σ, µ0, µ1) necessarily follows
a logistic function. GDA reduces to logistic regression. The converse, however, is not true; i.e., p(y = 1|x, θ, b)
being a logistic function does not imply p(x|y) are multivariate normals. This shows that GDA makes stronger
modelling assumptions. When these modelling assumptions are correct, then GDA will find better fits to the data, and
is a better model. Specifically, when p(x|y) are indeed multivariate normals with shared Σ, then GDA is asymptotically
efficient. Informally, this means that in the limit of very large training sets, i.e., for m large enough, there is no
algorithm that is strictly better than GDA. In contrast, logistic regression is more robust and less sensitive to incorrect
modeling assumptions. Indeed, because of the weaker assumptions of the logistic regression models, it could be
applied to multiple distributions of data (Gaussian or Poisson for example). Also, when data is non-Gaussian, then
in the limit of large datasets, logistic regression will almost always do better than GDA. For this reason, in practice
logistic regression is used more often than GDA.
In the next section, we make a further distinction between two types of generative models.

4 Prescribed vs Implicit Generative models
This section and the next are inspired by [2].
Prescribed Generative models are those that provide an explicit specification of the distribution of an observed
random variable x; inducing a log-likelihood function log qθ(x) with parameters θ. For instance, the generative model
presented above—Gaussian discriminant analysis—is a prescriptive generative model. A difficulty with this type of
model is to assume the correct distribution of the input variable for complex problems. To avoid bad assumptions,
one could get rid of the task of assuming a model and let the training data generate a distribution that would fit the
observed random variable. This is the purpose of the following type of model.
Alternatively, Implicit Generative models are those that provide a procedure that generates data. More precisely,
implicit generative models use a latent variable z and transform it using a deterministic function Gθ : Rm → Rd,
where θ is indexing a family of such functions. Given a probability measure q on Rm, Gθ induces a probability
measure p̂(x) on Rd:

p̂(E) := q
(
G−1θ (E)

)
, for E a (measurable) subset of Rd.

4

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 21, 2019

Figure 1: A cartoon of an implicit generative model where q is a unit gaussian and Gθ is a neural network.

The objective would be to find a θ such that the induced p̂(x) is as ‘close’ as possible to the true data distribution p(x).
One of the main challenges is that computing p̂(x) can be highly intractable; for instance, when Gθ is specified by a
deep neural network. This difficulty motivates the need for methods that side-step the intractability of computing the
likelihood. Also, the loss function of the implicit generative model shown in the figure above still has to be specified.
Generative adversarial networks (GANs), among other approaches, provide a solution for these types of problem. We
explore GANs in the next section.

5 Generative Adversarial Networks

Figure 2: A simplified schematic of a generative adversarial network

We start with our generator Gθ introduced above. If we want to train G, we need a way to assess how ‘close’ the
generated p̂(x) is to the true data distribution p(x). In order to do so, we introduce a discriminator D whose task is
to tell p(x) apart from p̂(x); if a discriminator D can’t tell if an instance x came from p(x) or p̂(x), then—according
to D—these two distributions are ‘close’ to each other.
Given an instance x, D(x) ∈ [0, 1] reflects how strongly D believes x to be a sample from the true distribution
p(x). When x is indeed from the true distribution, the loss incurred by D when predicting D(x) is − logD(x).
Conversely, when x comes from the G generated distribution p̂(x), the loss incurred by D when predicting D(x) is
− log (1−D(x)). If we choose to sample from p(x) half of the time and to sample from p̂(x) the other half of the
time, then the expected loss of D is

L(D) = −1

2
Ex∼p(x) [logD(x)]− 1

2
Ex∼p̂(x) [log (1−D(x))] .

So, for a given generator G, the discriminator tries to minimize the above, which is equivalent to the following:

max
D

Ex∼p(x) [logD(x)] + Ex∼p̂(x) [log (1−D(x))] .

5

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 21, 2019

The generator G, on the other hand, wants to ‘preemptively’ generate the worst distribution p̂(x) for its adversary D:

min
p̂(x)

max
D

Ex∼p(x) [logD(x)] + Ex∼p̂(x) [log (1−D(x))] ,

by abusing notation, we rewrite it as:

min
G

max
D

Ex∼p [logD(x)] + Ez∼q [log(1−D (G(z)))]︸ ︷︷ ︸
V (G,D)

.

Setups like the one above are called generative adversarial networks (GANs). They are often framed as instances of
adversarial optimization; for instance, interpretingD andG as playing a minimax game with value function V (G,D).
Generative adversarial networks can be easily implemented. For instance, the initial implementation for solving the
above min-max problem was based on this simple iterative algorithm: first fix G, then maximize over D; next, fix D,
then maximize over G; repeat until satisfied. So no approximate inference nor estimation of partition function was
needed.

Figure 3: Training of generative adversarial nets [1]

In the figures above, the blue dashed line, the black dotted line and the green solid line illustrate the discriminative
distribution, the data generating distribution and the generative distribution respectively. Under each graph, the arrows
show how the latent space z is mapped to x through the generator (x = G(z)). (a) First, consider the case where pg
is similar to pdata. (b) The discriminator is trained to determine if its input is from the pg or pdata distribution. (c)
After an update to G, gradient of D has guided G(z) to flow to regions that are more likely to be classified as data. (d)
After several steps of training, if G and D have enough capacity, they will reach a point at which both cannot improve
because pg = pdata. The discriminator is unable to differentiate between the two distributions, i.e. D(x) = 1

2 .

5.1 Global optimality of pg = pdata

Subsection from [1].

Proposition 3. For G fixed, the optimal discriminator D is

D∗G(x) =
pdata(x)

pdata(x) + pg(x)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the quantity V (G,D).

V (G,D) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D (G(z)))]

=

∫
x

pdata(x) log(D(x))dx+

∫
z

pz(z) log(1−D(G(z)))dz

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1−D(x))dx

6

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 21, 2019

For any (a, b) ∈ R2\{0, 0}, the function y → a log(y) + b log(1 − y) achieves its maximum in [0, 1] at a
a+b . In

this case, a is pdata(x) and b is pg(x). The discriminator does not need to be defined outside of Supp(pdata) ∪
Supp(pg).

Note that the training objective for D can be interpreted as maximizing the log-likelihood for estimating the conditional
probability P (Y = y|x), where Y indicates whether x comes from pdata (with y = 1) or from pg (with y = 0). The
minimax game in equation can now be reformulated as:

C(G) = max
D

V (G,D)

= Ex∼pdata
[logD∗G(x)] + Ez∼pz [log(1−D∗G (G(z)))]

= Ex∼pdata
[logD∗G(x)] + Ex∼pg [log(1−D∗G (x))]

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pdata(x) + pg(x)

]
Theorem 4. The global minimum of the virtual training criterion C(G) is achieved if and only if pg = pdata. At that
point, C(G) achieves the value − log 4.

Proof. For pg = pdata, D∗G(x) = 1
2 , (consider Proposition above). Then,

C(G) = Ex∼pdata
[logD∗G(x)] + Ex∼pg [log(1−D∗G (x))]

= Ex∼pdata

[
log

1

2

]
+ Ex∼pg

[
log(1− 1

2
)

]
= log

1

2
+ log

1

2
= − log 4

To see that this is the best possible value of C(G), reached only for pg = pdata, observe that

Ex∼pdata
[− log 2] + Ex∼pg [− log 2] = − log 4

and that by substracting this expression from C(G) = V (D∗G, G), we obtain:

C(G) = − log(4) +KL(pdata||
pdata + pg

2
) +KL(pg||

pdata + pg
2

)

where KL is the Kullback-Leibler divergence. We recognize in the previous expression the Jensen-Shannon divergence
between the models distribution and the data generating process:

C(G) = − log(4) + 2 · JSD(pdata||pg)

Since the JensenShannon divergence between two distributions is always non-negative and zero only when they are
equal, we have shown that C∗ = − log(4) is the global minimum of C(G)and that the only solution is pg = pdata,
i.e., the generative model perfectly replicating the data generating process.

GANs can be difficult to train: gradients saturation and mode collapse can be problematic. In the next lecture, we will
see how we can mitigate some of those problems by using what is known as the Wasserstein GAN.

References
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. arXiv:1406.2661, 2014.

[2] S. Mohamed and B. Lakshminarayanan. Learning in implicit generative models. arXiv preprint arXiv:1610.03483,
2016.

[3] A. Ng. CS229 Lecture notes generative learning algorithms. http://cs229.stanford.edu/notes/
cs229-notes2.pdf. Accessed: 2018-03-05.

7

http://cs229.stanford.edu/notes/cs229-notes2.pdf
http://cs229.stanford.edu/notes/cs229-notes2.pdf

	Summary
	Discriminative vs Generative models
	Gaussian Discriminant Analysis
	The Gaussian Discriminant Analysis model
	GDA model and logistic regression

	Prescribed vs Implicit Generative models
	Generative Adversarial Networks
	Global optimality of pg = pdata

