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Abstract—We consider the problem of learning users’ (Is 7/10 good? or bad? or average?). In standardized tests
preferential orderings for a set of items when only a limited  sych as SAT and LSAT, relative performance is captured
number of pairwise comparisons of items from users is using a percentile ranking which has now become the

available. This problem is relevant in large collaborative Id standard dmissi Th th Ki f
recommender systems where overall rankings of users for gold standard tor admissions. us, the ranking of a

objects need to be predicted using partial information from Product relative to its peers is valuable information for
simple pairwise item preferences from chosen users. We ultimate user consumption.
consider two natural schemes of obtaining pairwise item  As mentioned before, given all ratings, rankings can
orderings — random and active (or intelligent) sampling. e gptained by sorting the ratings for each user. However,
Under both these schemes, assuming that the users OIrOIeIr_finding user ratings first and then transforming them to
ings are constrained in number, we develop efficient, low- ] = e : -
complexity algorithms that reconstruct all the orderings rankings is indirect, and may require much more infor-
with provably order-optimal sample complexities. Finally, mation and structure than the problem setting allows.
our algorithms are shown to outperform a matrix comple-  This is due to the fact that the range of user ratings
tion based approach in terms of sample and computational 5y pe quite subjective. For example, given a rating
requirements in numerical experiments. . .
scale of(0 to 10, a user can pick her top rating to I6e

and least favorable rating ds limiting the actual range
of values significantly. As a result, the actual ranking

Modeling and understanding user ratings based afi a product can be considerably different from what
structure is a recent but well-studied discipline. In thithe rating indicates when taken out-of-context. In other
setting, we have: products andn users, and our goal words, two users with identical rankings of products can
is to determine the overall rating-matrix — which ishave a very different set of ratings. In some settings
comprised of ratings each user for each product. Tl&ch as funding-proposal rating, coursework grading etc.,
main issue though, is that users only provide us withwae frequently observe a rating/grauhdlation, where the
subset (possibly random) of ratings, and we must nominge of ratings associated with the work being assessed
attempt to learn the remainder of the matrix entriegs skewed in favor of a less-punitive scale.
To this end, structure plays a key role, and low-rank The subjectivity of ratings provided by users also
structure is particularly useful in helping complete theegatively impacts low-rank structure — the basis for the
overall matrix [1], [2], [3]. effectiveness of powerful matrix completion techniques

In many scenarios, however, the ultimate goal is o predicting missing ratings.
understand useranking with ratings merely being a Motivating Example Even if all m users in the system
stepping stone along the way. In other words, we atmve exactly the same ranking for all products, their
interested in determining the order in which each afhoices of real-valued ratings can result in a rating matrix
the users would like these products. For example, tifiat is full rank. Without loss of generality, we can
the n products were movies, ranking reflects each usegssume the common ranking to jde. . ., n]. If each user
preference of movies using an integer ordering, with tiagere to generate real numbers uniformly ovej0, 10]
broken randomly. Similarly, whenever we have multipland then sort them in descending order, the resulting
products/brands of the same type (whether they e x n matrix will be full rank with high probability.
toasters, washers or restaurants), a rank-ordering of thértuitive justification for low-rank matrix completion
proves to be an effective representation of their relatitechniques originates from the fact that user preferences
merits. Intuitively, a raw rating of 7 out of 10 in thehave only a few degrees of freedom. However, with
absence of any other information is potentially uselesignificant user subjectivity, we expect rankings to cap-
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ture similarities in user preferences more effectivelynthaalgorithms matches lower bounds on the number of
ratings. pairwise samples needed by any procedure to learn

Conseguently, learning the rankings of a collection gfermutations with high probability, whem, n, and r
users directly is of primary interest. Indeed, as Weimere large. This shows that these reconstruction algorithms
et al. [4] argue, “Rating algorithms solve the wrongireorder-optimal— in the sense of sample complexity —
problem, and one that is actually harder: The absolufier learning users’ rankings from pairwise comparisons.
value of the rating for an item is highly biased forThe superior performance of our algorithms for the task
different users, while the ranking is far less prone tof learning user orderings is also borne out in practice
this problem.” in the results of numerical experiments that we report.

Much of existing work on learning rankings of ob- Organization: The remainder of the paper is orga-
jects deals with learning a single, “globally appropriatenized as follows. We describe the setup for the problem
ordering using preferences from training examples, tf learning users’ orderings from pairwise comparisons
minimize a suitable notion of loss ([5], [6]). Thesein Section Il. In Section Ill, we present our algorithms to
include the populatearning-to-rankapproaches [7], [8] infer users’ orderings, state performance guarantees and
and graph-based learning techniques [9], [10], and oeenverse results for the learning problem, and discuss
line permutation learning algorithms and frameworkthe implications of our results. Section IV contains the
[11], [12], [13]. Related work on sorting with noise orcomplete arguments required to prove our main results.
sorting partially ordered sets can be found in [14], [15Fection V presents numerical results for the performance
[16]. of our approach compared to that of a matrix completion

When a collection of orderings from users is tdased technique to solve the same problem.
be learnt, such methods could ideally be applied in a Notation: We let [n] denote the set of all integers
sequential, decoupled fashion to deduce the orderinff@m 1 to n. We denote the symmetric group dn]
However, structure among user orderings, if present, ciy S,. A permutationt € S, is a bijection on(n],
potentially be exploited to learn the orderings with savand~ (i) represents the rank of objectThroughout this
ings in sample complexity. Researchers have noted ti@per, we useV = (1) = n(n — 1)/2 to denote the
rankings in a population of users often exhibit forms ofiumber of distinct pairgi,j) € [n] x [n], i < j. We
“low-dimensional” structure — to paraphrase Jagabathutan also represent a permutationc S, by an x n
and Shah [17], “Irrespective of the number of candidatésatrix P such thatP (i, j) = —1 if =(i) > =(j) and
in an election, the number of distinct vote rankings thatx (i, j) = +1 otherwise. Sinc® . is skew-symmetric, a
prevail in the population are likely to be few, consideringnore practical representation is the stacking of its upper
a small set of ‘issues’ influences ranking patterns ovéiiangular entries into a vectqs, € {—1,1}". There is
candidates.” This inspires the following question wheg trivial bijection between the two representations, so we
jointly estimating users’ rankings of objects: How camise them interchangeably. Throughout, the phrase “with
structure among user orderings be effectively leveragéiyh probability” is used to mean with probability at
to learn orderings with significantly less effort? leastl — cn ! for constantc > 0.

In this work, we study the problem of learning a
collection of permutations chosen by users forn
items using only pairwise ordering information. Pairwise Consider the setup where each onerotisers totally
sampling asks a user to compare two specified items ed@ffers a set ofn objects; we denote the resulting
time, and is not only a natural choice for attempting€rmutation of usek € [m] by 7, € S,. The goal
to deduce ordering information, but also easy to inis to recover all of these permutations with a small
plement in practical systems. We consider the learnifymber ofpairwise ordering samples.e. how a user
problem under botlandom(i.e., algorithm-independent) relatively orders a specified pair of objects, from each
andactive(i.e., algorithm-dependent) pairwise samplingser. Specifically, leM = [pr, P, ... Px, ]| be the
schemes. As a reasonable structural constraint on tiex m matrix of pairwise orderings for all users. The
space of user permutations, we assume a stochaS@&npling set? C [N] x [m] denotes the indices of
model in which the users pick permutations uniformlgntries of M we sample,M(Q2) denotes the set of all
from a pool ofr possible orderings. samples acquired, and= |(2| is the number of acquired

For both the random and active sampling schemes, waMmples. Sampling can be performed either uniformly at
design efficient, low-complexity algorithms that can retandom tandom samplingor arbitrarily and adaptively
construct all the users’ orderings with a guaranteed nurdy the algorithm gctive sampliny In this setup, we are
ber of pairwise samples, with high probability. Moreovernterested in
we establish, using information-theoretic techniques ande Quantifying the minimumsample complexityof
concentration results, that the sample-complexity of our the learning problem, i.e., the number of samples
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required to infer all the users’ permutations withthe implications of our results and comment on their
high probability, and consequences.
« Developingefficient algorithmghat areoptimal for
sample-complexityi.e., that successfully recoverA. Learning with Random Pairwise Samples
all permutations drawing the minimum number of Suppose that the set of sampl@sis obtained by
samples required. uniform sampling with replacement frorfiV] x [m],
Model for User Permutations: Without further as- i.e., the set of all (object pair, user) combinations.
sumptions on the permutations, that all the users This models the case where, for instance, every user
choose, the problem of learning all thg is in general is asked to independently provide pairwise comparisons
decoupled. This renders unnecessary anything other tiian a uniformly randomly chosen set of object pairs.
a sequential, independent approach to learn each permibe problem is then to use these results to deduce the
tation with pairwise samples. The problem of learningsers’ orderings of all the objects. We introduce our
a collection of orderings becomes interesting when wiesst algorithm (Algorithm 1) to learn the permutations
impose structure on these orderings, since we can thgiMen s randomly drawn samples, and show that it
hope to exploit the resulting “coupling” between userecovers all the orderings with high probability given a
ordering behavior. sufficient number of random samples. In this description,
In practice, as noted in the introduction, item orderingge denote the sampling set by, C [N]x [m] to indicate
across a population of users are likely to be much few#s size s and usef), , C [N] to denote the positions
than all then! permutations irS,,. This can be attributed (object pairs) sampled from usere [m].
primarily to a small set of underlying “features” that In essence, Algorithm 1 uses tkepairwise samples
essentially drive the users’ preferences. We considierfirst separate each pair of users if there is disgrep-
a natural structural model where each user picks hancyin their sampled comparisons. A discrepancy occurs
permutation uniformly at random and independentlpetween two users andk if their sampled orderings for
from a common pool of randomly selected permutsa pair of objectgs, j) disagree, i.e.(i,7) € Qs N Qs i
tions. Specifically, we impose a “low-dimensionality"and M(Qg, ., u) ¢ ;) # M(Qs k. k)¢5 Having “clus-

constraint as follows: tered” the users’ permutations thus, the algorithm pro-
Assumption: There exists a set of permutations ceeds to completely learn the (presumably correctly clus-
{p1,p2,-..,pr}, Where eachp; is drawn independently tered) permutations by collecting all pairwise samples

and uniformly at random frons,,. Eachr; is drawn from users belonging to each cluster and topologically

from thep; independently and uniformly at random, i.e.sorting the resulting Directed Acyclic Graph (DAG).

P(r, = p;) =1/r Yk e [m], j € [r]. Our first result concerns the sample-complexity of
We remark that in correspondence with the matrixAlgorithm 1:

completion literature, the assumption above makes t

+1 matrix of pairwise orderings across all useM & r — 6(m7) for a fixedy > 0. Algorithm 1 recov-

[I.)’” Pr, .- Pr,]) at most“rankr, an thus may be ers all permutations correctly, with high probability,
viewed as a surrogate to “low-rank” structure in our

: : . .~when the number of random samplesis at least
permutation-learning setup. The setup is characterized
. . max{(12/v)mlogr,2rN logn}.

completely by the triple(n, m,r), and our algorithms
and results are expressed chiefly in terms of theBwoof sketchThe two terms given in the bound of Theo-
parameters. rem 1 above quantify separately the sample-complexities
needed to successfully complete both steps of the algo-
rithm, i.e. clusteringand learning We first establish a
concentration result for the pairwise Hamming distance

In this section, we present algorithms for recoveringetween two distinct permutations drawn uniformly at
(and sampling when permitted) all the permutationsndom. This allows us to show thét(logr) random
under both the random and active sampling modelgairwise comparisons per permutation are sufficient to
For each case, we provide rigorous analytical guarantegdistinguish them. Alongside, for any fixed permuta-
on the number of samples sufficient for our algorithmson, we identify a necessary and sufficient condition
to exactly recover all permutations with high probato exactly learn the permutation, from pairwise sam-
bility. This is followed by matching converse resultsples, in terms of the unique Hamiltonian path of the
using information-theoretic source-coding techniquedijgraph induced by the permutation. This is used to-
that establish fundamental lower bounds on the samplgether with a coupon-collecting argument to show that
complexity required byany algorithm to learn the per- the permutation-learning stage of Algorithm 1 requires
mutations with a significant probability. We discus®) (N logn) random samples per cluster (i.e. for each

l?‘aheorem 1 (Random Sampling, Algorithm 1)Suppose

IIl. ALGORITHMS, MAIN RESULTS AND
IMPLICATIONS



Algorithm 1

Input: Set of sampled position&®, C [N] x [m] and
samplesM (Q;) € {—1,+1}".

Output: Permutations of all usersr;)i* ; € S,,.
Stage 1 Clustering:

1) SetC to be an empty collection of clusters.

“clusterings”, and using a source-coding proof technique
that results in a converse theorem. For the permutation
learning stage, an important step is to show that the
number of random pairwise samples needed to learn a
single permutation with high probability @(NV logn).

For this purpose, the necessary and sufficient Hamilto-

2) Setld + [m], to be the set of all unclustered usershian path condition — from the proof of Theorem 1 —

3) If U =0, go to Stage 2.
4) Letwu < mingey k, setld < U\ v and L < {u}.
5) For everyk e U
o If M(Qs_’u N Qs7k7u) = M(Qs,u N Qs,k’vk)
then setf <~ U\ k and L < LU {k}.
6) SetC + CU{L} and go to Step 3.
Stage 2 Permutation Learning:
For every cluster € C,
1) Let QL — UkEL Qs,k
2) Let G = (V,E) denote a directed graph, with
vertex setV’ = [n] and edge sef = ().
3) For every sample positiop in Q,, drawn from
userk and corresponding to object pdif, j)
o if M(p,k) =—1thenE <+ EU{(i,j)}; else
E+— EU{(j,4)}
4) Setp, <+ Topol ogi cal Sorting(Q
5) Setn, «+ p. forall k € L.

p;) to completely infer the cluster. Putting together these

estimates gives the theorem. The full details of the pro
are provided in Section IV-A.

On the other hand, we establish a converse res
on the minimum number of samples needed for su

cessful permutation recovery. For this purpose, consider

a general algorithmA4 that takes as input pairwise
random sampledVI(€2;) and maps it to its output: a
possibly random estimatdM = [p:, ps, -..ps, | Of

all the permutations, one for each user. We denote the

probability of successful reconstruction witd on s
samples byP,... = P..{A,s) = P[M = M].

Theorem 2 (Random Sampling, Lower Bound on
Sample Complexity) For any algorithm A, if s <
max{(m—r)logr,rNlogn}, thenP,,.— 0asn — cc.

that characterizes when a permutation is learnt can be
used along with concentration estimates for the lower
tail of the coupon-collector problem to prove the result.
We defer details of the full proof to Section IV-B.

Note that Theorem 2 is a&trong conversei.e., it
states thatny algorithm fails to recover all the users’
item orderings correctly wittoverwhelming probability
when the number of random samples drawn is below a
threshold.

Implications of Theorems 1 and 2:

o When the number of usenms is relatively small,
viz. m = O(rNlogn) = O(rn?logn), Algorithm
1 succeeds overwhelmingly with(r N log n) sam-
ples according to Theorem 1. At the same time,
with our standing assumption that = 6(m?)
for a fixed v, the converse Theorem 2 forces at
least Q(rNlogn) samples to be drawn for cor-
rect reconstruction. Thus, in this regime, Algorithm
1 is order-optimal for the sample-complexity of
the problem. Further, it demands on an average
=N logn random samples from each userylk 1
additionally, this means that each user needs to con-
tribute avanishing numbeof pairwise comparisons
for successful recovery. This represents a significant
gain compared to decoupling the learning problem
across users and reconstructing each permutation
independently (whose net sample complexity is
mN log n).

« In general, the best reconstruction algorithm for
any number of samples is information-theoretically
specified to be thélaximum-Likelihood (ML)re-
construction algorithm, i.e., the algorithm that out-
puts a set of user permutations that maximizes the
a posterioriprobability of permutations given sam-
pled observations. Solving the maximum likelihood
problem requires performing a potentially hard
combinatorial optimization over the space of all

of

ult
C-

Proof sketch:For the sake of contradiction, assume that
an algorithm can learn the orderings with fewer than
the claimed number of samples. It follows that this
results in an algorithm that performs the easier clustering
and permutation learning (given clustering information)
tasks with those samples. Hence, it suffices to prove

separate converse results for these two stages. A key

possible user ordering patterns — a computationally
infeasible task. However, in the above regime with
a relatively small number of users, it is remarkable
that the efficient and simple Algorithm 1 achieves
the same sample complexity as the ML algorithm
for the permutation-learning problem.

contribution of this work is to prove a strong convers®: Leaming with Active Pairwise Samples
theorem for clustering. This is carried out by first ex- In many application scenarios, it is often desirable
tending the information-theoretic notion of typicality to(and possible) taactively query users for comparisons



of objects. Thus, the choice of samples could be moity, taking s = O(mlogr + rnlogn) pairwise samples.

intelligent, and we can hope to accomplish the learni ]

task with asmaller numbef carefully chosen pairwiserlgroOf sketch:The argyments used to prove Theorem. 3
follow the same outline as those for Theorem 1, viz.

samples than if we took uncontrolled random pairwisé)

samples. Here, we indeed show that this is the caf@,t'Tat'n? the fnulmt;er_ of samples dslufﬂm_ent ttr? pelrfotrm
and provide a joint sampling and permutation-learnin@e wo tS etps orclus etrlngfuseth a:I ear.nm%_ tec us grs.
algorithm (Algorithm 2) that is both (a) order-optimal oncentration properties for the amming distance be-

across all learning algorithms, and (b) requires few%‘ﬁ’een trancioml%/)clhosen pe(;mutaﬂons are (ke)mp:oyeq for
samples than its random-sampling counterpart. € estimate o (logr) random common object pairs
which guarantees successful clustering for all users. This

is followed by observing that actively sampling and
learning a single cluster/permutation is equivalent to
sorting items using pairwise comparisons, and standard
g . tail bounds for the performance of a standard sorting
Output: Permutations of all usersix)j, € Sy. algorithm such as Quicksort show th@tnlogn) pair-
Stage 1 Clustering wise samples suffice to learn each cluster with high
1) SetQc to be a random subset of [N], of sizeprobability. Putting together these estimates gives the

Algorithm 2

Input: Pairwise representation matrixI; Number of
sampless the algorithm is allowed to use.

min {Clog 7"78} promised bound. The full proof details are provided in

2) SetC to be an empty collection of clusters. Section IV-C.
3) Setlf «+ [m], to be the set of all unclustered users. For the case of active sampling, we provide a matching
4) If U =0, go to Stage 2. converse theorem — in the same spirit as Theorem 2 —
5) Letw < mingey k, settd < U \uandL < {u}. for the sample complexity odny algorithm that isfree
6) For everyk ¢ U to draw any pairwise samples from the users. Recall

o If M(Qc,u) = M(Qc, k) then setd <~ U\ k from the random sampling scenario, that we denote the

and L + LU {k}. probability of successful reconstruction, using algarith

7) SetC + CuU{L} and go to Step 3. A on s samples, by = Pucl A, 5).

Stage 2 Permutation Learning through Sorting Theorem 4 (Active Sampling, Lower Bound on Sample
For every cluster € C, Complexity) For any active-sampling algorithrd, if

1) Use a sorting algorithm to sort the] objects in s < max{(m — r)logr,rnlogn}, then P, — 0 as
cluster£ balancing the sample load across all usefs — .

in the cluster.
2) If sample budget is reached before completion Proof sketchThe proof for this active sampling converse
stop and declare failure. theorem uses the same high-level outline as that for

Theorem 2. The first part — for the clustering stage — is
the same information-theoretic source coding argument
Algorithm 2 follows the same basic outline of operas in the proof of Theorem 2. For the second part, we
ation as Algorithm 1, i.e., working by clustering andise a converse argument for jointly learning a set- of
learning each clustered permutation. The key departwiistinct permutations, which essentially generalizes the
here is that it is free to specify pairs of items that it wantg(n logn) pairwise comparison result to sort a set of

compared by certain users, and so it uses this flexibility item. We reproduce the full details of the proof in
to cluster and learn permutations faster. Specifically, $ection IV-D.

first picks a randomcommonset of clogr pairs of Implications of Theorems 3 and 4:
objects that it askall r users to order, and uses these
samples to cluster users’ putative permutations. Once
clustering is accomplished, the algorithm pretends that
each cluster is a single ordering and attempts to learn
the ordering using a standard sorting algorithm on
items (we use Quicksort in our implementation, Section
V) that issues pairwise queries to essentially “complete”
the permutation. Following the same outline as with
Algorithm 1, we first bound the sample complexity of
Algorithm 2 as follows.

« Algorithm 2 achieveperfect reconstructiowith an
order optimalnumber of samples (i.€)(mlogr +
rnlogn)). In other words, distinguishing users on
the basis of a few®(mlogr)) common pairwise
comparisons decouples the overall learning prob-
lem tightly into r independent “cluster-learning” or
sorting problems.

o Compared to the sample complexity of learning
with random samples (Theorems 1, 2), Algorithm 2
exhibits a saving in sample complexity of the order

Theorem 3 (Active Sampling, Algorithm 2) Algorithm of n. This can be directly attributed to the gain

2 correctly recovers all permutations, with high probabil- in “collaboratively sorting” users clustered together



as the “same”, in the second phase of the algprobability of error is given by

rithm. Also, the sample complexity of Algorithm 2

translates into an average &f logn samples per

user — a gain of the order of/mn over trying  Fe =P(Hr £ Q) = P( U {Ga)¢ Qs}>
to reconstruct all permutations independent of each (,3)EHx

other. < D P ER) = D <1 - Jif)

Remark. It is worth noticing that, even if the order (4,§)EHn (4,§)EHn
samples argy-ary (i.e. full orderings of subsets of size <ne N —=n- 1

q) instead of pairwise samples, for constagnthe order-

wise behaviour of the sample complexities does not

[
change.
The complexity of discerning a couple of permu-
IV. PROOFS OFMAIN RESULTS tations, 7,7 € S,, depends on the magnitude of
A. Proof of Theorem 1 their difference. Since samples are pairwise orderings,

) ) ) a meaningful notion of distance is the following metric.
In this section we provide the proof for the correctness

of Algorithm 1 in detail. First, we identify a necessaryDefinition 3 (Permutation distance metric)We define
and sufficient condition (Lemma 1) for the exact recovthe distance of a couple of permutations, 72 € S,,

ery of a single permutation and use it to provide at® be the Hamming distance of the vector pairwise
upper bound on the number of samples sufficient féepresentationg,,p~, € {—1,+1}".

recovery (Lemma 2). We then define a useful metric

and characterize a concentration on distance between N N . ‘
permutation pairs drawn from a uniform prior (Lemma A(Pry, Pry) 2D Lpr, (i) # Py (4)]
4). These tools are in turn used to prove tlixiog r) i=1

samples per user are enough to distinguish two distinct o ) )
permutations drawn uniformly at random (Lemma 7). We use this distance metric throughout this work.

Finally, all these intermediate results are used to proyemma 4 (Typical permutation distance) et 7, m €
. . . )
Theorem 1 in its generality. S, be drawn independently uniformly at random from

Lemma 1. Letr € S,, denote the true permutation wethe symmetric group. The distance between the two
draw samples from. In order to recover thely ordered Permutations is concentrated arourd,2,
set we need alln — 1 samples in the set
P(|d(pr, , Pry)—N/2| > Vn2H7) < 27", fory > 0.
He 2 {(i,g) ri=a"(r),j =7 (r+1), o
forr=1,....,n—1}. Proof: First, by the linearity of expectation we get

That is, we need to sample all edges on the unithJr(]:-e expected distance to be

Hamiltonian path on the directed graph induced by per- N
mutations. Furthermore, this set of samples is sufficient E[d(pr,,pr,)] = E ZM’ (4) # pry ()]

for exact recovery. =

Proof: Let (i,j) € H, and (i,j) ¢ Qs i.e. one N
pair of consecutive objects in the true ordering is not = Zp(pm (1) # pry (7))
sampled. Considering, j are consecutive, any indirect i—1
comparison through samplds, k) and (k, j) is incon- = N/2.
clusive, since eithefr (i) < w(k) andw(j) < w(k)} or
{m(i) > m(k) and 7 (j) > m(k)}. To show concentration around this expected value,

Conversely, if all pairs ir# . are sampled, the unique e construct a Doob martingale and use the Azuma-
ordering implied by the samples can be found byasimgl@beffding inequality. DefineX; 2 1{px, (i) # pr, (i)}
topological sorting algorithm. B g let ' ' :

Lemma 2 (Simple achievability) Givens > 2N logn
samples, there exists an algorithm that recovers any Zr = Ex,,, x.i0,...[d(Pr,» Pry) [ X1, - - Xk,
permutations € S,, with high probability.

Proof: By Lemma 1, sampling all edges on thand, specifically,Z, = E[d(pr,,Pr,)].- Notice that,
unique Hamiltonian path#., is sufficient. Hence, the surely,|Z; — Z,_1| < 1. Then, by the Azuma-Hoeffding



inequality, |S]. For step(c) notice that, since by assumption <

P(|d(pa, s pry)—N/2| > \/W) n/2, k.is strict!y.gree.tter tham/.2 and iq this range the
e binomial coefficient is decreasing in Finally, step(d)
=P(|Zn — Zo| > Vn2t7) stems from a simple use of the bouffg < (%)k ]
< 2exp <_( v ZQM)Q) Definition 6 (Clustering error) Let 7y, 75 € S,,, where
23,12 m # ma, andQy, Qy C [N] be the multisets of positions
2ty that have been sampled fropy., and p,, respectively.
= 2exp (n(nl)) We define a<lustering errorthe event when the two

vectors agree on all common positions sampled, i.e.,

50(71-177(27 Qla 92) £ {pﬂ'l (Ql N QQ) = Pny (Ql N QQ)}

—_nY
~2e ™.

[
Lemma 7. Let 7y, mo be drawn fromsS,, independently

balls-and-bins problem, where: balls are thrown in- uniformly at random. We independently and uniformly at
dependently and uniformly at random intcbins. LetZ random draw two multisets of samples with replacement

denote the number of occupied bins after the end of t@M the two vectorsp,, and pr,. The multisets of
process. Ifm < n/2, then for any0 < 6 < 1 sampled indices, of sizeg and sy respectively, are
' ’ denoted byQ; ,,Q24, C [N]. If 51 = 55 = clogr,

Lemma 5 (Number of occupied bins)Consider the

e —om for constantsc > 45 > 0, then, for large enough and
P(Z <(1=d)m) <(1—d)m (1=8m r, the probability of a clustering error is upper bounded
as follows.

Proof: Let L; denote the load of bin after the end .
of the process. Since our main focus is the asymptotic Pe 2 P(Ec(m1, T2, Q1 s,, Qo)) < 2¢77" + 3777,
behaviour, as botln andm grow, we ignore the integer

constraints on the cardinality of bin sét Proof: Denoted(pr,, pr,) by d and the conflicting

sample set op,, and p,, by

P(Z<(1-8)m) A={i:pn () # Pr (i)},
where|A| = d. Then, the probability of clustering error
—P U ﬂ {L — 0} is P(Aﬁgl,slmQZsQ = @) We defineX £ |AQQLS]‘ ~
SCILISISm—(1_8)m i€ Bin(s1,p), wherep = d/N andE[X] = s;d/N. Notice

that, since sampling is done with replacement &nhd,,
(%) Z P ( n (L = O}) is a mqltisg_t, we alsq congide:le,sl to_ be a m_ulti§et,
which justifies the Binomial model for its cardinality.
m Now let Z denote the number dafistinct samples in
= Z (n—|S|> the multisetA N Q; ,,. To facilitate exposition, let us
SCnlIS|>n—(1-8)m n define the following events:

SC[n],|S|>n—(1—6)m i€S

n,—n+(1_5)m>m E={ANQ, N, =0},

n
81d

ScC[n],|S|>n—(1-8)m (
. " A=IANQ | < (1-6)2—
e ey {lanar<a-a5
—n—(1— 1 k n and

B={Z <(1-6)|[ANQ 41},

(<(15)m< " ><(1_5)m>m

- n—(1-35m n for 0 < 01,02 < 1. We upper bound the probability that
n (1—=8)m\™ none of the samples i1, ;, intersect with the samples

(i)(]_ B 5)7n ( ne )(15)7” <(1 _ 5)m>m IP)(A n Ql,sl N 92752 = (Z))

- (I1=06)m n =P(E|A)P(A) + P(E]A°)P(A°)

etn \ < P(A) + P(ELA7)

Here, step(a) follows from a union bound and stép) +PEIB", A )EZ(B A%) .
from the monotonicity of the summands with respect to < P(A) + P(BJA?) + P(E]B°, A%) @)



Using the Chernoff bound, Having collected all the necessary lemmata and in-

termediate results we, finally, turn to proving Theorem
B(X < (1-6)EIX)) < exp{~BE[X]/2}) & g Proving

for a binomially distributedX, we can upper bound the Theorem. Suppose: = 6(m?) for a fixedy > 0. Given

first term like this: s > max < emlogr, 7(1?67)1&{%2)} random samples, for

_ c > 12/y and 0 < 41,02 < 1, Algorithm 1 fully
PlA) =P ('A Nl == 51)N> recovers/allm permutations correctly, in the sense that
delogr 52l {7t = 7, Vk € [m]} with high probability.

IN } = Proof: By Lemma 7, all comparisons between dis-
_ ) tinct permutations at Step of the clustering stage, are
For the second term in (1), since surel}NQ1 ;[ < 51, pound to reveal a difference betwepn, andp., with
by Lemma 5, high probability. A simple union bound over all user
c c pairs gives us a guarantee that the clustering stage will
P(BA%) =P (Z < (L= 0)|AN G, | ’ A ) succeed with high probability. Let, ;, denote the event
<P(Z < (1—62)s1) that that the sampled values from usersind k do not
55—1 —d8zclogr reveal a difference, i.e.,
e %2 d )

(]_ _ §g)clogr 5uk £ {M(Qs,u N Qs,ka u) = M(Qs,u N Qs,k:a k')} .

81d

< exp {—5f

< (1 —d2)clogr (

The probability that at least one error occurs in Step 5

For the final term in (1), is upper bounded by

d
P(E|B°, A°) = P (5 ‘ Z>(1—6)(1— 50‘?\{)
81d 52 P U 8uk S Z P(gu k)
<(1-(1— o \S1e ; :
= (1 (1=%)1-0)7 ) (u,h) (u k)€ lm]
TWw# Tk TuZTk

$182d
<exp {—(1 —d2)(1 — 01) 1N2 } < 9m2e~" + 32yt

de? log? r < 2mZe ™ 4 3¢m2 /4,
=exp{—(1—5z)(1—51)} . : .

N where in the second inequality we use the result from

Lemma 7 and in the last one, the assumptioa 6(m").
henm? = O(e"/m), for any ¢ > 12/~ this bound
ecays asn~! for large enoughm.
The number of samples drawn from ugeis Sj, ~
P(&|d >d) gfcéf% Bin(s,1/m) and the number of users in cluster
5y 1 —syclogr 1S Uj ~ Bin(m,1/r). Let L; denote the number of
e 2 d samples drawn from all users in clustgrA sure lower
(1- 52)clogr> bound for Ly, 2 min}_; L; is

2 2
dc 108; T} Lmin > UminSmina
where Upin, £ min’_; U; and Sy, = min}", Sk.

Letd & N/2 — ny/n. By Lemma 4P(d < d) < 2e~".
Now, since the bound on the right hand side of (1) i
decreasing ind,

+ (1= 62)clogr (

+exp{—(1—62)(1—51) ~ -
J
Straightforward calculations yield that, for any> 45, Simple Chernoff and union bounds give us a lower bound
there existsn’ large enough such that the first termon Uy, for 0 < §; < 1,
decays at least as fast as” and there exists.” large

2

m _ mdg
enough such that P (Umm <(1- 51)7) <re T,
P(&ld>d) <3r P, V¥Yn>n". and on Sy, for 0 < §; < 1,
Finally P (S < (1-82)> ) < me 5
y min > 2 m/) = .

PE)=P(Eld<d)P(d<d)+P(|ld=d)P(d=d) Then by a union bound,

<P(d<d)+P(&|d>d) m s
P(Lmin < (1 —01)—(1 —09)—
<2 "4 3r P, ( ( ) r ( 2)m>
7YL5% 55%

n <re 2 +me 2,



and settings = %, Optimizing overt yields
ms? 552 ! ! .-
P (Lpmin < 2Nlogn) < re” T + me‘?iwzt, P(T® <E[TY] - cN) <e™ 2. @)

which decays at least as fast as! when given the L8t us setl = i(n) = n — |logn|, so that forn large
prescribed number of samples. The result follows as&0ugh, we have

consequence of Lemma 2. This proves that both stages I(n) I(n) 1
of Algorithm 1 succeed with high probability. B ETCN=N"1/p.=NY ——
[ ] ]; /P ; —

B. Proof of Theorem 2 B

N

In this section we provide the proof of the strong
converse theorem for the random sampling complexity in = 2V (log(n —1) —log([logn] —1) — 1)
detail. We first prove a converse theorem for the sample> N (log(n — 1) —log(logn — 1) — 1)
complexity of learning a singl.e permu_tatiop (Lemma 8). > N (log(n/logn) —1).
To that end, we show that, given an insufficient number ) )
of samples, the random sampling process will miss &f5ing the bound (2) ‘Q’V'th our choice éf= /(n), and
increasingly large number of critical samples leading toith ¢ = ¢(n) = \/dn*logn/3 for a fixedd > 0, we
probability of learning error that approachesNext, we Can write
E)rove a stror;g t;:onversedtheorehm forfthe task of Elustering P(T® < s) <P(T®
Lemma 14) by extending the information theoretic

o S . ) < - —1) -
definitions of typicality to colourings and clusterings < N(logn —loglogn —1) = cN)

(Hn—l - Hn—l(n)—l) =N (Hn—l - H\_lognj—l)

and using a popular source coding converse theorem < P(T" < E[T®] —¢N) < e — i,

technique. Eventually, we use these intermediate results o .

in the proof for Theorem 2. Shmce{T < s} = {[Hx \ Q| <n—1-1}, this means
that

Lemma 8 (Strong converse for single permutation learn- 4

ing). For any recovery algorithmi = ¢(Q,, Pr(€2,)) P(|Hx \ Q] > [logn|) >1—n""% 3)

that usess < N(logn —loglogn — 1 — y/dm?log n/3) A permutation-learning algorithny needings samples,
random samples, the probability of erraf, = P(7 # i, its most general form, maps the input of sampled pairs
7), tends tol asn — oo, Q, C [N] and their valuesP, (Q,) € {1, +1} to a prob-
Proof: By Lemma 1{7 # 7} = {H~ £ Q}. apjiity distribution onsS,,. The probability of successful
LetT Qeqote th_e number of sampleg drawn ufi} C learning for g is then P, 2 P(g(Q, Pr()) = ).
{,. This is an instance of the classic coupon collectoX gtandard information-theoretic argument yields the
problem, wherel" = T1k+ Tp + ...+ Th fOr Tk ~  following fact: the highest probability of success over
Geonipy), andpy, = “5~, and all T}’s are independent. 5 hermutation-learning algorithms is attained by a

. . l
Further, define the partial surid® =37, Ti for L € Maximum Likelihood (ML) learning algorithng* given
[n—1]. We use a Chernoff bound to show a concentratiqsy,

of T around the mean. Le§; £ T, — ET; and () &

Sk, Sk. For anyt >0, g (ws, ps) =
P(T® < ETO — ¢N) = P(S® < —¢N) arg max P (m = | Qs = ws, Pr(Qs) = 1),
= p(e—tS“) > eteN) with the corresponding success probability being
< e teNE[e—tSY), Py = P(g" (Q, Pz(Q)) = )
Nfo;\/(,l)to bound the moment generating function (MGF) ) pé%xp(ﬂ =7 QP ()], (@)
0 , #ESy

! We show that asi — oo, Py~ — 0, completing the
Ele~"(Ts=1/p)] = T] e"/P*E[e'"*]  proof of the theorem. This is accomplished, in turn, via
1 k=1 the following claims:

zN

E[e ") =

>
Il

et/pr < ﬁ et/Pr Lemma 9. Let7 € S,,, ws C [N] and p, be such that
(et - 1)/pk + 1~ k=1 t/pk + 1 Pﬁ(ws) = Ps- lf |H7? \Ws| Z kr thenPﬁ"(ws) = Ps fOf

R Lo N2.2 at least2* distinct permutationst’ in S,,.
t* 2 k=1 Pk < e2t" 7%

::N

k=1
t

1
2

IN

(&
Proof: This follows from the observation that by

= P@TO <E[TO] - cN) < et (N7)*—teN assigning any combination af1 values to the entries



of 7 in the positionsH \w, of Px, and keeping all other of all colourings by~¢. An elementC € T, is an
entries unchanged, we get a valid permutation (pairwisequivalence class of colourings, also denoted({by-
representation). m for any colouringL € C, and we call it anr-clustering

Lemma 10. If 7,7 € S,, ws and ps are such that Definition 13 (True clustering) We denote by'(M) €
P;, (ws) = Pz, (ws) = ps, then T the truer-clustering induced by the pairwise repre-

sentation matrixivi.
P(m = 71| Q4 = ws, Pr(2) = ps ) | |
Lemma 14 (Clustering converse)For any clustering

=P (m =72 | Qs = ws, Pr(Q2s) = ps) - algorithm, given byC = ¢(M), C e T, that uses
Proof: We have, s < m(logr — ¢) — rlogr samples, for any, > 0,
the probability of error,P, = P(C' # C(M)), goes tol
P(r=71] Qs = ws, Pe(Qs) = ps) asn — oo.
P (Qs = ws, Pr(Q) = ps | 7 =71 )P (7 =71) Proof: In the system model described in Section II,
= P (Qy = ws, Pr(Qy) = ps) each ofm users is assigned to a cluster i.i.d., using
P(Q, = wy) P (r = 71) a uniform distribution in[r]. More generally, we can

= — assume that the cluster indices are drawn i.i.d. from
s some arbitrary distributionp(¢*) = III™;p(g;). Our
- s T analysis uses the notion of strong typicality ([18], [19])
P (Qs = ws, Pr(Q) = ps) and goes along the lines of a converse theorem for source
P(r=7o| Qs = ws, Pr(Qs) =ps) - coding in [19].

m Definition 15 (Strongly typicalr-colouring) Let L be
Combining the results of the two lemmata above, wae random r-colouring, where colours are drawn from
have that ifw, andp, are such that there exists € S,, [r] i.i.d. according top(.), and defineN(¢; L) to be
satisfying Pz (ws) = ps and |Hz \ ws| > &, then the number of occurrences of the coloyre [r] in L.
) _, We define the set ofstrongly typicalr-colourings with
,ﬁ%ﬁp(” = 7| Qs = ws, Pr(€s) = ps) <2 respect top(q) to be

. — < 71@_ r
= Lna\aulzey - maxP(m =@ | Oy, Pr(Q)) < 2 n oy
p(@)0 ’

q=1

1
V(L) - o) < 5} . ®
Settingk = |logn] in the above, and using (3) and (4)

gives Standard typicality results give us the following
X bounds on the cardinality of typical sets and the proba-
Py =E | max P (r = 7| s, Pr(€)) bility of typical r-colourings.
<glgn pp=d 5 0 Lemma 16 (Theorem 6.2, [19]) There exists > 0 such
i thatea()aséﬁ()andifLeT”g)é,
as promised. n »(a),

. , o . —m(H(p)+e) —m(H(p)—e)
Learning the full set of permutations intuitively in- 2 : <p(l) <2 mme (6)

volves a step of clustering, where users that adhere Agso, form sufficiently large,

the same permutation are grouped in the first stage of the .

algorithm. We argue in the proof for Theorem 2 that an P(L e p(q),a) >1—¢ ()
algorithm, that cannot — even as a by-product — cluster m(H(p)—e) m m(H (p)+e)

the users, cannot perform the learning task at hand. (1-0)2 < |Tyeyol =2 - @

Definition 11 (r-colouring) We call a mappingL :

[m] — [r] an r-colouring. An interesting fact about members of this typical set
is that for any permutationr € S,., i.e. a recolouring

Definition 12 (r-clustering) Consider twor-colourings :
that preserves colour groups, and amcolouring L,

L, and L, and define the equivalence relation
Ly ~c Lo LeTiys = o(L) € Tyio-1(g)).6,

& {L1(i) = L1(j) iff La(i) = L2(j), ¥i,j € [m]}. where o(L) £ [0(L(1)), o(L(2)), ..., o(L(m))].

) ) ) ) More specifically, in our current setup(q) is uniform
The two colourings are equivalent if their colour groups, 7] 50, p(o—(q)) = p(q) for all ¢ € [] and

are exactly the same, i.e., they cluster elemen{sihnin

exactly the same way. L&t denote the quotient group LeTi,s< o(L) € w(a),6°



As a direct consequencé, € T, . = L' € T™ . ., and from the result in Lemma 8, the probability of learn-
p(q),0 ; p(g),0" . )

for all L' € (L), and we can give a simple definitioning p;» goes to zero. That is, there exists ugee [m]

for strongly typicalr-clusterings such thatry, = pj/, SOP(7y, # i) = P(pj # pjr) — 1

Definition 17 (Strongly typical r-clustering) Under and

uniformp(q), let L be ad-strongly typicalr-colouring. m

We call the equivalence clasd) - a d-strongly typical P =P (U {fru # Wu}> > P (7 # mp) = 1.
r-clustering, and denote the collection of aHlstrongly u=1

typical r-clusterings by7,™. [ |

The collection7{" is essentially a partition of alb- Theorem. For any recovery algorithm given by
strongly typicalr-colourings and otherwise contains the(7,)m | = g(Q,, M(12,)), that uses
exact same elements. Hence from (7),

P(CeT")=P(LeTy,s) >1—¢ s < max {rN(logn —loglogn — 1— +/dn? logn/?)),
Now, to calculate the cardinality of this collection, natic
that, by (5), for anys < 1/r, any é-strongly typicalr- (m —r)logr
colouring is onto, that is, it maps to all values [n].

In this case, sincéL)s consists of all possible colour -
permutationss(L) for someo € S,, |(L)¢| = rl. From random samples, the probability of errof’. =

this fact and (6), forC € 7;™, we get P(Upe i {7% # 71}), goes tol asn — oc.
m(Hp)—) Proof: The first term is directly explained by Lemma
p(C) =Y p(L) <l 27 mHp)I=e 18. To justify the second term we give the following
LeC argument. Consider an algorithrp(Qs, M(£2,)) that
< g-mllogr—e)frlogr, (9) usess < (m —r)logr samples and suppose it sustains

a probability of error uniformly bounded away fromn
Frhat is, P, <1 -4, for 6 > 0 and for all n > 0. Then
the clustering induced by the output of the algorithm is
correct with probability at least, or equivalently,

Now consider an arbitrary deterministic clusterin
algorithmC' = g(M) that usess < m(logr—¢)—rlogr
binary samples from the matri¥, for some constant
¢ > 0. It can map each of the® possible unique
inputs to either strongly typicat-clusterings, or non- A <1_
strongly typicalr-clusterings. Using (9), the probability P (C(g(QS’M(QS))) 7 C(M)> s1=9, Vo

mass within7;™ covered by the outputs of the algorithMry;q resuit directly contradicts Lemma 14 and the as-

Is at most sumption thats is strictly positive must be false. This
gsg—m(logr—e)t+rlogr _ 9—m((—e) concludes the second argument. |

and the total probability covered is, by (7), at most C. Proof of Theorem 3

2L P(C ¢ T <27 e In this section we prove correctness of Algorithm 2.
It follows that any mass in7 not covered by the We use results already established in Section IV-A as
algorithm gives a lower bound on the probability ofStepping stones to prove correctness of the clustering
error, hence step and known properties of sorting algorithms to prove

correctness of the learning step.
P, >1— (279 4o

Theorem. There exist constants;, ¢; such that, using

s > cymlogr + cornlogn samples, Algorithm 2 fully
Lemma 18 (Learning converse)For any recovery al- recovers allm permutations correctly, in the sense that
gorithm given by(7,)7", = g(Qs, M(€),)), that uses P(#x = 7, Vk) tends tol.

which goes tal for any positive value of. [ |

s <rN(logn —loglogn — 1 — y/dw?logn/3) random Proof: We first analyze the probability of a cluster-
samples, the probability of errof’. = P(|J,-,{#x # Ing error, i.e., the event that a mistake happens in Step
Tk }), goes tol asn — oo. 6 of Stage 1 of our algorithm. Consider the case when

Proof: Let L; be the number of samples drawn fromr,, # 7. By Lemma 4, the event
users adhering to permutatiop;, for j € [r]. Since .
Z;Zl L; = s, there exists surely ajf such that,L; < D = {d(pr,,Pr.) < N/2 —ny/n}

s/r. Therefore, happens with probability at mo&e~". Then, the prob-

Ly < N(logn —loglogn — 1 — /dn?logn/3) ability that for =, # m, the sampled positions match



perfectly can be upper bounded as follows. algorithm with better worst case guarantees can be used
e.g. Mergesort) to give complexity of the same order.
P(M(Qe, 1) = M(Qc, k)|my # ) (e.g. Mergesorf) to g plexity
— p(M(QC,u) = M(Qc, k) |7, # ﬂk’]))[p(p) D. Proof of Theorem 4

+p(M(Qc,u) = M(Qc, k)|7, # 7Tk,pﬂ)]p(pﬂ) In this section we provide the proof for the strong
converse theorem on the sample complexity in the active

cilogr

<1-2 "+ (1 _ W) -1 sampling scenario. We reuse the clustering converse

N argument from the proof of Theorem 2 (Lemma 14) and

N/2 — ' ' ' i
< 2" 4+ expld —ci logr /2 —ny/n proyldg a new |nf0rmat|or) j[heoretlg argument for the
N intrinsic complexity of the joint learning task.
c 2y/n
=2¢ ™" 4T 2 TR Theorem. For any recovery algorithm given by
(10) (7)™, = g(M), and using
Let us now define the event, that the sampled values from s < max {(m — r)logr, crnlogn}

usersu and k do not reveal a difference, as -
samples for any) < ¢ < 1, the probability of error,

Euk = {M(Qc,u) = M(Qc, k)} P, =P(U" {7k # m}), goes tol asn — co.
= {pr. () # Pr,. ()} Proof: The first term is related to the clustering
ability of an algorithm and follows from an argument
The probability that at least one error occurs in Step @jentical to the one given in the proof for Theorem 2
is upper bounded by, hinging on Lemma 14. We do not repeat it here.
By a similar argument, any algorithm that cannot
identify the common pool of permutatiodg; };_, (see

P U Eup | =P U U Euk Section Il), cannot learn all user permutations correctly.
(u,k) @GDEr?  (uk) To see this, whenevet, = = for all k, the set
W AT, iAl Tu=pi,TR=p1 {p;}i-, consisting of the unique elements iy},

is exactly {p;};_; (modulo a relabeling). Hence, it
suffices to show that for any algorithm, that is given
=P U {pr. () # pr ()} by {p;}7—, = §(M) and usess < crnlogn samples,
@GOEr? (k) P ({p;}i=1 # {pj}}=1) goes tol asn — oco.
L TSP =P Uniformity in the choice of the;’s and a union bound
tell us that, when = o(v/n!), all p;’s are distinct with

high probability — a birthday paradox type result. This
=P U {Pp: () # Py, (Q2e) } pr?)bapbility is Y P P
(e,D)€[r]?
il ) r(r—1)
P (pj # pr, Vi # k) > 1~ =1-c¢
< Y P(Pu(Qe) # Pp(Q0)) ’ 2n!
(L€l for e > 0 asn — oo. In this case, there are(’:,!)
i e distinct permutation pool sets possible; all with equal
< 2r%emm Pt probability, at least(1 — ¢)/(™) and at most1/(").

Now consider any deterministic algorithm that maps the
FO% gifferent inputs to different common permutation sets.
Following an argument similar to Lemma 14, we argue

s _ ) that the probability mass covered within the set of all
The second stage of the algorithm consists rof . tions is at most

sorting tasks. The sample complexity depends on the

where in the last step we use the result from (10).
any c¢; > 6 this bound decays as~! for large enough

sorting algorithm used. The usual candidate, Quicksort, 25— 4 e < 20rnlogzng—rnlos, ntmE e
is famous for its low complexity. The authors in [20] (7) ‘
argue the existence of constamtgk), for everyk, such — gle=yrnlogynty 4 o

that the sample complexity of Randomized Quicksort is )
at mostes(k)nlogn with probability at leastl — - and any mass not covered results in an error. Hence,

nT.
In the regime where- = 6(n7), this result along with p {p;}: T _ gle=D)rnlogy nt1s
a union bound over the sorting tasks establish that ({2:5= iYizt) N
c2(k)rnlogn samples are sufficient for learning withand, for anyc < 1, the probability of error goes ta as
high probability. In other regimes, a different sorting? — oo. This concludes the proof. u



V. EXPERIMENTAL RESULTS

This section describes results of numerical experi
ments on synthetic data following the stochastic mode
for user permutations introduced in this work. For the
random sampling case, Matrix Completion (MC) is an
attractive choice of algorithm to hope to recover users
permutations, since (a) we essentially get to see parti
entries from the+1 matrix M of pairwise representa-
tions of the permutations (note, though, that the:?)
pairwise representation is over-complete), and (b) i
the users have at most distinct permutations among
themselves, the rank @1 is at mostr. Hence, for the !
random sampling problem, we compare the performanc
of our algorithms — both in terms of sample complexity
and running time — with an Augmented Lagrangian @)

Method version of Matrix Completion (ALM-MC, rel- m=n, r=n®5

evant code from [21]). Finally, we also present an 1[[7& =m0 ‘ ‘ F
overall comparison of sample complexities across bot || 5 nse ]
random and active sampling cases and algorithms. Th vall= % - et :;
helps to put both sampling methods in perspective, an ol b
also illustrates the order-wise gains when the learnin

algorithm is allowed to sample pairwise orderings from
users at will. All the routines run in MATLAB on a 2.4

GHz desktop computer system with 4 GB of memory.
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A. Random Sampling: Algorithm 1 and ALM-MC o2} b

For our random sampling experiments we set= o ¢,
n, varying from 100 to 400, and consider two scaling A —— 12 14
regimes ofr: r = m%2 andr = m®®. We generate slrn’log m
random permutations for ath users by first picking: (b)

random permutations and then assigning users randomly N
to these permutations. Fig. 1. Probability of success vs. number of random samples

) ) normalized byrn? logn for Algorithm 1, (a)r = m%25,m = n,(b)
Figure 1 shows how the reconstruction success proba= m%5 m = n.

bility of Algorithm 1 scales with the normalized number

s/(rn*logn) of random pairwise samples drawn from

users. Each of the colored curves represents a fixed valuéNote the similar phase transition for the success prob-

of n, the number of items, and depicts the success pradbility for ALM-MC as the number of drawn samples

ability of Algorithm 1 as the number of random samplesaries. Also, since the phase transition occurs at the

s is varied. We observe a sharp “phase transition” effeef-* timescale instead of the? timescale for Algorithm

for the probability of success at this normalized scalk (Figure 1),ALM-MC requires order-wise2"* more

of samples — the “correct” normalization suggested samples than Algorithm 1 to succeddot only is this

Theorems 1 and 2. concordant with the lower bound on sample complexity
We plot the corresponding probabilities of succesgven by Theorem 2, but it also demonstrates the order-

for ALM-MC (matrix completion on the pairwisec1l Wwise superior performance of Algorithm 1 to solve the

matrix) in Figure 2. An important point here is thatoermutation-learning problem from random samples.

due to our stochastic model for user permutations, the ) . )

matrix of pairwise ordering representations of users R Active Sampling: Algorithm 2

at most rankr, and the number of samples required We plot the success probability of Algorithm 2 which

to complete this matrix (and recover all orderings) idraws active samples (Figure 3), for the same regime

O(rN'2log N) = O(rn**logn) when incoherence is (m,n,r) as in the random sampling case. Here, as

constant, according to Cadsl and Recht [2]. Thus, weindicated by Theorems 3 and 4, the right scale of nor-

use this normalizing factor for the number of samples imalization for the number of samples takemislogn —

our plots. ann-fold improvement over reconstruction with random




-

.
H - © -n=100
—8—n=175
$ - n=250

— % —n=325
&

-

4
©
L
4
©

o
®

o
3
T
o
3

----0
@@ I

o =}

(2] ©

o
)
T

Probability of success
o
(&
o
~

o o
w S
- - o _
.

o

w

o
N
L
o
N

o
o
I
o
o

|

Probability of success
o
o

................. , , ,
. 0.15 0.2 0.25 0.3 0.8 1 1.2 14 16 18 2
sl(r n4 log n) s/(r n log n)
(@ (@
m=n, r= 05 m=n, I':I']05
1t - © —n=100 1t - © —n=100
—B—n=175 —»—n=175
0.9 ¢ n=250 H b 0.9 @ n=250 a |
— % —n=325 | ~0— n=325 o
11020)
o8 2 il 0,81~ < —n=400 ol 1
& mH Dg
@ 0.7 ! ! E @ 0.7F § g
7 7 (|
1 Bl 4
4 L 1 4
306 * @ 306 of i
S} I | S o) @
2z 05 | , N 2 05F Q[ I ,
3 ) 3 °
[+ I <
S 04 ¥ | i 2 04f (-] ﬁ il
o 1 ) a X o
03 ‘ | g 03} 6;1 —
& 1
I d
0.2 | — 0.21 ) —
» | 8 4
i , , g ,
0.1 » 0.1
|
1

T 045 02 025 03 0.8 1 12 14 16 18 2
si(r n4 log n) s/(rnlog n)
(b) (b)

Probability of success vs. number of random samplddg. 3. Probability of success vs. number of sample®rmalized by

Fig. 2.
m = n,(b)

s normalized byrn?“4logn for Augmented Lagrange Multiplier- rn logn for Algorithm 2 (active sampling), (a) = m?9-2,
based Matrix Completion (ALM-MC), (&F = m®25,m = n,(b) 7 =m%% m=n.
r=m%% m=n.

_ N _ occurring at low problem sizes and observe that the
sampling. The phase transition for Algorithm 2's succes§rves for ALM-MC and Algorithm 1 are projected to
probablllty is Clearly visible in Figure 3. Cross over at |arger sizes of

) . In Figure 4(b) shows the running times on a 2.4 GHz
C. Overall Comparison: Sample Complexities and Rugspyj wjth 4 GB of memory, for our implementations of
ning Time Algorithms 1 and 2, and the off-the-shelf implementation

To put all the algorithms considered so far in perspecf ALM-MC. Here, the standard ALM matrix completion
tive, we compare and contrast their sample complexitiaégorithm is outperformed by both Algorithms 1 and
and running times together. 2, illustrating the gain in computational efficiency that

Figure 4(a) compares the number of samples at tHeese algorithms offer

success probability phase transitiof) &gainst the prob-

lem size ) for Algorithms 1 and 2 and ALM-MC. VI. CoNcLUsION

Algorithm 2 dramatically outperforms its random sam- We considered the problem of learning a collection of
pling counterparts, lending support to the active samplingsers’ permutations of items using just partial pairwise
model of attempting to learn user rankings. On the otheomparisons. Both random and active/intelligent sam-
hand, in the random sampling case, though ALM-M@ling schemes were separately considered. In both cases,
(matrix completion) fares better than the order-optimale developed efficient algorithms that reconstruct the
Algorithm 1, we suspect that this is due to overheadsermutations with a guaranteed sample complexity, and
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Fig. 4. Experimental results on sample and time complexity of aill9]
algorithms.
[20]

using corresponding lower bounds on sample complexif3i]
showed that these algorithms are order-optimal, addition-
ally with an order-wise performance improvement when
sampling actively. Moreover, there is a significant gain
when solving the problem jointly compared to learning
each permutation individually. Experiments were carried
out that validated the performance benefits of the algo-
rithms we presented, and in many cases showed their su-
periority over traditional matrix-completion approaches
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