
IFT 6085 - Lecture 2
(lecture title here)

Scribe(s): [your name(s)] Instructor: Ioannis Mitliagkas

Guidelines for scribing
This section gives some instructions for scribing and should not be present in the final notes. The rest of this document
is sample context to demonstrate usage of this template. The sample content does not include proofs, but your notes
should include the proofs we covered and key elements of the in-class discussion.

Scribing accounts for 10% of your final grade. Your notes will be evaluated on the following elements:

• Completeness: cover all major ideas discussed in class. In cases where we covered the proofs, include the
proofs in the notes and try to explain all steps that use a property or result beyond basic algebra. Use latex’s
proof environment.

\begin{proof}
...
\end{proof}

• Clarity: use full sentences to clearly set up and describe the material. Include key elements of the discussion we
has in class to help explain/unpack the material after the technical results are presented.

• Credit: use the .bib file to cite the sources where we draw our results from. See the assigned reading material
on the website for the sources. Try to be precise, citing specific chapters or theorems from the sources.

1 Summary
In the previous lecture we [short summary of last lecture]

In this lecture we [short summary of this lecture]

2 [sample content] Binary Classification
In this section we introduce the basic elements of supervised classification.

Definition 1 (Observation). A d-dimensional vector

x ∈ X ⊆ Rd

where X is a measurable space equipped with a σ-algebra.

Definition 2 (Class). Binary label assigned to measurement

y ∈ {−1, 1}
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Binary classification entails most of the challenges found in the multiclass problem.

Definition 3 (Classifier). Mapping from observations to labels

g : X → {−1, 1}

For a pair (x, y), g(x) 6= y is the error event.

Assumption 4 (Probabilistic Setting). Let (X,Y ) be a random pair. Distribution described by

P{X ∈ A}, A ∈ σ-algebra

and the a posteriori probability
η(x) = P{Y = 1|X = x}.

Definition 5 (Probability of Error).
L(g) = P{g(X) 6= Y }

General goal: Find g that minimizes the probability of error. If we are given η(x) we can construct classifier with
minimal probability of error.

Definition 6 (Bayes Classifier).

g∗(x) =

{
1, if η(x) > 1/2

−1, otherwise

then L(g∗) ≤ L(g) for any g.
L∗ , L(g∗)

is called the Bayes risk or Bayes error.

Definition 7 (Sample). Sequence of i.i.d. random pairs

(X1, Y1), . . . , (Xn, Yn) ∼ (X,Y )

n-length data set
Dn = (X1, Y1, . . . , Xn, Yn)

We construct a classifier based on the data

gn(X) = gn(X;X1, Y1, . . . , Xn, Yn)

Fixing the data, we measure the performance of gn using the conditional probability of error

Definition 8 (Conditional Probability of Error).

L(gn) = P{gn(X) 6= Y |Dn}

Goal: Find gn that minimizes probability of error.

3 Empirical Risk Minimization
We restrict to recovering classifiers for a predetermined set, i.e. g ∈ C.

Use our data, Dn, to estimate L(g) and select classifier.
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Definition 9 (Empirical Error (or Risk)).

Ln(g) =
1

n

n∑
i=1

I[g(Xi) 6= Yi]

Let g∗n denote the minimizer of empirical risk.

Ln(g
∗
n) ≤ Ln(g), ∀g ∈ C

Its probability of error (on unseen data), L(g∗n) = P(g∗n(X) 6= Y |Dn) satisfies,

L(g∗n)− inf
g∈C

L(g) ≤ 2 sup
g∈C
|Ln(g)− L(g)|

L(g∗n) ≤ Ln(g∗n) + sup
g∈C
|Ln(g)− L(g)|

Uniform deviation bound on RHS controls the probability of error of selected classifier g∗n.

Bound can be quite loose (though sharp in minimax sense – we won’t cover this). Improvements later in paper.

Definition 10 (Empirical Averages - Notation). For X1, . . . , Xn iid random variables, with values in X .
Let F denote class of bounded functions X → [−1, 1].
Expectation

Pf , E[f(X1)]

Empirical Average

Pnf = (1/n)

n∑
i=1

f(Xi)

Our goal is to get good bounds for the uniform deviation

Z , sup
f∈F

(Pf − Pnf)

Our first bound comes using bounded differences.

Theorem 11 (Bounded Differences). For function g : Xn → R with bounded differences parameters (ci)ni=1,

P(|Z − EZ| > t) ≤ 2 exp−2t2/C

where C =
∑n
i= c

2
i .

Proof. proof goes here

Note that Z satisfies bounded differences with ci = 2/n. Then with probability at least 1− δ,

sup
f∈F
|Pf − Pnf | ≤ E sup

f∈F
|Pf − Pnf |+

√
2 log 1/δ

n
.

Now we just need to focus on the expectation term. We’ll use symmetrization.

Let sample X ′1, . . . , X
′
n be independent of original sample and distributed identically. Then,

E sup
f∈F
|Pf − Pnf | = E sup

f∈F
(E [|P ′nf − Pnf ||X1, . . . , Xn]) ≤ E sup

f∈F
|P ′nf − Pnf |.

Now, introduce independent Rademacher random variables, P(σi = 1) = P(σi = −1) = 1/2.
Then,

E sup
f∈F
|P ′nf − Pnf | ≤ 2E

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

σif(Xi)

∣∣∣∣∣
]
.
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Definition 12 (Rademacher Average). Let A ∈ Rn be bounded set of vectors a = (a1, . . . , an). Then

Rn(A) , E sup
a∈A

1

n

∣∣∣∣∣
n∑
i=1

σiai

∣∣∣∣∣ .
is called the Rademacher Average of A.

Definition 13. F(xn1 )

Given sequence x1, . . . , xn ∈ X , let F(xn1 ) denote the class of vectors (f(x1), . . . , f(xn)) with f ∈ F .

Theorem 14. With probability at least 1− δ,

sup
f∈F
|Pf − Pnf | ≤ 2ERn(F(Xn

1 )) +

√
2 log 1/δ

n

and

sup
f∈F
|Pf − Pnf | ≤ 2Rn(F(Xn

1 )) +

√
2 log 2/δ

n

For second statement, use the fact thatRn(F(Xn
1 )) satisfies bounded differences. Relevant results in Bartlett et al. [1].

Second bound is data dependent.

Theorem 15 (Properties of Rademacher Averages). If A = {a(1), . . . , a(N)} ∈ Rn is a finite set,

Rn(A) ≤ max
j=1,...,N

‖a(j)‖
√
2 logN

n

Contraction Principle

If φ : R→ R, with φ(0) = 0 and Lφ-lipschitz and φ ◦A is the set of all (φ(a1), . . . , φ(an)) ∈ Rn with a ∈ A,

Rn(φ ◦A) ≤ LφRn(A)

We will use Hoeffding’s inequality to prove the first property.

We often want to get simple upper bounds on Rademacher Averages.

Example 16 (Indicator Functions). From our classification example

F =
{
I{(x,y):g(x) 6=y} : g ∈ C

}
Definition 17 (VC Shatter Coefficient). Let F be the class of indicator functions.

For any collection of points xn1 = (x1, . . . , xn), F(xn1 ) is a finite set and its cardinality is denoted by

SF (xn1 ) , |F(xn1 )| ≤ 2n.

The shatter coefficient is a measure of richness of function class F .

Using its properties, we can upper bound the Rademacher Average using the shatter coefficient.

Rn(F(xn1 ) ≤
√

2 log SF (xn1 )
n

.
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Then,

E sup
f∈F
|Pf − Pnf | ≤ 2E

√
2 log SF (Xn

1 )

n
.

Definition 18 (VC Dimension).

“cardinality of the largest set of points a classifier can shatter”

If A ⊂ {−1, 1}n, then the size V of the largest set of indices {i1, . . . , iV } ⊂ {1, . . . , n} such that:

for each binary V -vector, b ∈ {−1, 1}V , there exists a = (a1, . . . , an) ∈ A such that (ai1 , . . . , aiV ) = b.

Theorem 19 (Sauer’s Lemma). For any set A ⊂ {−1, 1}n,

|A| ≤
V∑
i=0

(
n

i

)
≤ (n+ 1)V

where V is the VC-dimension of A.

Then,
log SF (xn1 ) ≤ V (xn1 ) log (n+ 1)

where V (xn1 ) is the VC-dimension of F(xn1 ), and

E sup
f∈F
|Pf − Pnf | ≤ 2E

√
2V (Xn

1 ) log (n+ 1)

n
.

To make this result distribution-agnostic, let
V , sup

n,xn
1

V (xn1 ).

Theorem 20 (Vapnik-Chervonenkis Inequality). For all distributions,

E sup
f∈F

(Pf − Pnf) ≤ 2

√
2V log (n+ 1)

n
.

4. Minimizing Cost Functions
When VC-dimension smaller than n, empirical risk minimization is guaranteed to work well.

Restricted classes C imply small VC-dimension, hence good generalization guarantees.

However, approximation error infg∈C L(g)− L∗ becomes an issue.

Furthermore, minimizing the empirical Ln(g) is computationally hard (even simple cases are NP-hard). For example,
X ∈ Rd and C is the class of hyperplanes.

We’ll soften things up.

Definition 21 (New parametrization). For functions, f : X → R, we consider classifiers of the form,

gf (x) =

{
1, if f(x) ≥ 0

−1, otherwise
.

Then the probability of error of g is written as

L(f) , L(gf ) = P(sgn(f(X)) 6= Y ) ≤ EIf(X)Y <0
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Definition 22 (Cost Function). Let φ : R→ R+ be a non-negative function such that

φ(x) ≥ Ix>0

Examples include, φ(x) = exp (x), φ(x) = log2(1 + exp(x)) and φ(x) = (1 + x)+.

Definition 23 (Cost Functional).
A(f) = Eφ(−f(X)Y )

and the empirical cost functional

An(f) =
1

n

n∑
i=1

φ(−f(Xi)Yi).

By Definition 22,
L(f) ≤ A(f)

and
Ln(f) ≤ An(f).

Theorem 24 (Probability of Error is Close to Empirical Cost). For fn chosen from class F j based on data Dn. Let B
denote a uniform upper bound on φ(−f(x)y) and let Lφ be the Lipschitz constant of φ. Then with probability at least
1− δ,

L(fn) ≤ An(fn) + 2LφERn(F(Xn
1 )) +B

√
2 log (1/δ)

n
.

4.1.1 Weighted Voting Schemes

In boosting and bagging simple classifiers combined make powerful ensembles.

Definition 25 (Weighted Voting Scheme).

Fλ =

f(x) =
N∑
j=1

cjgj(x) : N ∈ N,
N∑
j=1

|cj | ≤ λ, g1, . . . , gN ∈ C


C the class of base classifiers, g : X → {−1, 1}.

Using the fact that the Rademacher average of the absolute convex hull of A is the same as that of A [2], and our
VC-dimension upper bounds, we get

Rn(Fλ(Xn
1 )) ≤ λRn(C(Xn

1 )) ≤ λ
√

2VC log (n+ 1)

n
.

This implies the following guarantee on the probability of error of the learned classifier:

L(fn) ≤ An(fn) + 2Lφλ

√
2VC log(n+ 1)

n
+B

√
2 log (1/δ)

n
.

The great feature of this bound, is that it only depends on the VC-dimension of the base class, VC .

Skipping margin error, strictly convex cost functions and kernel methods in favour of improved bounds due to better
use of concentration tools.
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5 Tighter Bounds

Example 26 (Motivating Example).

Consider fixed function f : X → {0, 1}.

Then Pnf is the average of n independent Bernoullis with parameter Pf .

Bounded Differences

Pf − Pnf ≤
√

2 log(1/δ)

n

Bernstein

Pf − Pnf ≤
√

2V ar(f) log(1/δ)

n
+

2 log(1/δ)

3n

Since f takes values in {0, 1},
V ar(f) = Pf(1− Pf) ≤ Pf,

and the second bound is tighter.

Now we apply this intuition to empirical risk minimization.

We saw that we get a significant improvement using information on the variance.

Going for a uniform bound on supf∈F (Pf −Pnf) would force us to use the worst case variance over the whole class
F .

Instead, we will scale each individual difference by
√
Pf to account for variability in the variance each f induces.

Our quantity of interest becomes,

sup
f∈F

Pf − Pnf√
Pf

.

By symmetrization on the tail probabilities,

P

{
sup
f∈F

Pf − Pnf√
Pf

≥ t

}
≤ 2P

{
sup
f∈F

P ′nf − Pnf√
(Pnf + P ′nf)/2

≥ t

}

And by introducing Rademacher random variables,

2P

{
sup
f∈F

P ′nf − Pnf√
(Pnf + P ′nf)/2

≥ t

}
= 2E

[
Pσ

{
sup
f∈F

1
n

∑n
i=1 σi(f(X

′
i)− f(Xi))√

(Pnf + P ′nf)/2
≥ t

}]

This leads to the following result.

Theorem 27. Let F be a class of functions, f : X → {0, 1}. With probability at least 1− δ, all f ∈ F statisty

Pf − Pnf√
Pf

≤ 2

√
log SF (X2n

1 ) + log(4/δ)

n

and
Pnf − Pf√

Pnf
≤ 2

√
log SF (X2n

1 ) + log(4/δ)

n

Applied to our empirical risk minimization problem, the above result implies.
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Theorem 28. Let g∗n be the empirical risk minimizer in class C of VC dimension V . Then, with probability at least
1− δ,

L(g∗n) ≤ Ln(g∗n) + 2

√
Ln(g∗n)

2V log(n+ 1) + log(4/δ)

n
+ 4

2V log(n+ 1) + log(4/δ)

n

In the extreme case when there exists a classifier in C that classifies without error. Then,

Ln(g
∗
n) = 0

and with probability at least 1− δ,

L(g∗n)− inf
g∈C

L(g) ≤ 4
2V log(n+ 1) + log(4/δ)

n

Significantly improved rate.

More generally, if L(g′) = infg∈C L(g), we have

Ln(g
∗
n) ≤ Ln(g′) = Ln(g

′)− L(g′) + L(g′)

and using Bernstein, we get w.p. at least 1− δ,

Ln(g
∗
n)− L(g′) ≤

√
2L(g′) log(1/δ)

n
+

2 log(1/δ)

3n

which along with the last Theorem, gives us the following result.

Theorem 29. There exists a constant C s.t. with probability at least 1− δ,

L(g∗n) inf
g∈C

L(g) ≤ C

(√
inf
g∈C

L(g)
V log n+ log(1/δ)

n
+
V log n+ log(1/δ)

n

)
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