Performative Prediction

Juan C. Perdomo* Tijana Zrnic* Celestine Mendler-Dünner Moritz Hardt
{jperdomo, tijana.zrnic, mendler, hardt}@berkeley.edu
Motivation
Distribution Shift

Fairness Is Not Static: Deeper Understanding of Long Term Fairness via Simulation Studies

Alexander D’Amour
Google Research
alexdamour@google.com

Hansa Srinivasan
Google Research
hansas@google.com

James Atwood
Google Research
atwoodj@google.com

Pallavi Baljekar
Google Research
pbaljekas@google.com

D. Sculley
Google Research
dsculley@google.com

Yoni Halpern
Google Research
yhalpern@google.com

Initial

![Initial Distribution](image1.png)

Max Utility

![Max Utility Distribution](image2.png)

Eq. Opportunity

![Eq. Opportunity Distribution](image3.png)
Retraining

1. Train model
2. Observe distribution shift
3. Collect new data
4. Go back to step 1
What can we say theoretically?
Framework
\[\theta \quad \mathcal{D}(\theta) \]

\[Z = (X, Y) \sim \mathcal{D}(\theta) \]

\[\ell(Z; \theta) \]
Risk vs. Performative Risk

\[R(\theta) := \mathbb{E}_{Z \sim \mathcal{D}}[\ell(Z; \theta)] \]

\[PR(\theta) := \mathbb{E}_{Z \sim \mathcal{D}(\theta)}[\ell(Z; \theta)] \]
Definition 2.1 (performative optimality and risk). A model $f_{\theta_{PO}}$ is performatively optimal if the following relationship holds:

$$\theta_{PO} = \arg\min_{\theta} \mathbb{E}_{Z \sim D(\theta)} \ell(Z; \theta).$$
Example 2.2 (biased coin flip)

\[X \in \{-1, 1\} \]
\[\epsilon < 0.5 - \mu \quad \mu \in (0, 0.5) \]

\[Y \mid X \sim \text{Bern}(0.5 + \mu X + \epsilon \theta X) \]

\[f_\theta(x) := \theta x + 0.5 \quad \theta \in [0, 1] \]

\[\ell(z; \theta) := (y - f_\theta(x))^2 \]
Example 2.2 (biased coin flip)

\[Y \mid X \sim \text{Bern}(0.5 + \mu X + \epsilon \theta X) \quad f_\theta(x) := \theta x + 0.5 \]

\[\mathbb{E}_{Z \sim \mathcal{D}(\theta)}[\ell(Z; \theta)] = \mathbb{E}_X \mathbb{E}_{Y \mid X}[(y - f_\theta(x))^2 \mid X] \]

\[\mathbb{E}_{Y \mid X}[(y - f_\theta(x))^2 \mid X] = X^2(\theta^2 - 2\theta \mu - 2\theta^2 \epsilon) + 0.25 \]

\[\frac{\partial}{\partial \theta}(...) = 2X^2(\theta(1 - 2\epsilon) - \mu) \]

\[\theta_{PO} = \frac{\mu}{1 - 2\epsilon} \]
Example 2.2 (biased coin flip)

\[\epsilon = 0 \implies \theta_{PO} = \mu \]

\[\implies f_{\theta_{PO}}(x) = \mu x + 0.5 = \mathbb{E}[Y \mid X = x] \]
Example 2.2 (biased coin flip)

\[Y \mid X \sim \text{Bern}(0.5 + \mu X + \epsilon \theta X) \]

\[\theta_{PO} = \frac{\mu}{1 - 2\epsilon} \]
Can we actually find optimal points?
Problem!

\[PR(\theta) := \mathbb{E}_{Z \sim D(\theta)}[\ell(Z; \theta)] \]

\[\theta_{t+1} := \arg \min_\theta \mathbb{E}_{Z \sim D(\theta_t)}[\ell(Z; \theta)] \]

\[G(\theta) := \arg \min_{\theta', \theta} \mathbb{E}_{Z \sim D(\theta)}[\ell(Z; \theta')] \]
Decoupling risk

\[DPR(\theta, \theta') := \mathbb{E}_{Z \sim \mathcal{D}(\theta)}[\ell(Z; \theta')] \]
Stability

Definition 2.3 (performative stability and decoupled risk). A model $f_{\theta_{PS}}$ is *performatively stable* if the following relationship holds:

$$\theta_{PS} = \arg\min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_{PS})} \ell(Z; \theta).$$

$$\theta_{PS} = \arg\min_{\theta} DPR(\theta_{PS}, \theta)$$
Example 2.2 (continued)

\[\theta_{PS} = \arg \min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_{PS})}[\ell(Z, \theta)] \]

\[\mathbb{E}_{Z \sim \mathcal{D}(\theta)}[\ell(Z, \theta)] = \mathbb{E}_X \mathbb{E}_{Y|X}[(y - f_\theta(x))^2 \mid X] \]

\[\mathbb{E}_{Y|X}[(y - f_\theta(x))^2 \mid X] = X^2(-2\theta_{PS}\theta \epsilon + \theta^2 - 2\theta \mu) + 0.25 \]

\[\frac{\partial}{\partial \theta}(\ldots) = X^2(-2\theta_{PS}\epsilon + 2\theta - 2\mu) \]

\[\arg \min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_{PS})}[\ell(Z, \theta)] = \mu + \theta_{PS}\epsilon \]
Example 2.2 (continued)

\[\arg \min_{\theta} \mathbb{E}_{Z \sim D(\theta_{PS})}[\ell(Z; \theta)] = \mu + \theta_{PS} \epsilon \]

\[\theta_{PS} = \mu + \theta_{PS} \epsilon \]

\[\theta_{PS} = \frac{\mu}{1 - \epsilon} \]
Example 2.2 (continued)

\[\theta_{PS} = \frac{\mu}{1 - \epsilon} \quad \theta_{PO} = \frac{\mu}{1 - 2\epsilon} \]
Stability vs. Optimality

\[DPR(\theta, \theta') := \mathbb{E}_{Z \sim \mathcal{D}(\theta)}[\ell(Z; \theta')] \]
Stability vs. Optimality

Theorem 4.3. Suppose that the loss $\ell(z; \theta)$ is L_z-Lipschitz in z, γ-strongly convex (A2), and that the distribution map $\mathcal{D}(\cdot)$ is ε-sensitive. Then, for every performatively stable point θ_{PS} and every performative optimum θ_{PO}:

$$\|\theta_{PO} - \theta_{PS}\|_2 \leq \frac{2L_z\varepsilon}{\gamma}.$$

Definition 3.1 (ε-sensitivity). We say that a distribution map $\mathcal{D}(\cdot)$ is ε-sensitive if for all $\theta, \theta' \in \Theta$:

$$W_1(\mathcal{D}(\theta), \mathcal{D}(\theta')) \leq \varepsilon\|\theta - \theta'\|_2,$$

where W_1 denotes the Wasserstein-1 distance, or earth mover’s distance.
Theoretical Results
Assumptions

(joint smoothness) We say that a loss function $\ell(z; \theta)$ is β-jointly smooth if the gradient $\nabla_{\theta} \ell(z; \theta)$ is β-Lipschitz in θ and z, that is

$$
\|\nabla_{\theta} \ell(z; \theta) - \nabla_{\theta} \ell(z'; \theta)\|_2 \leq \beta \|\theta - \theta'\|_2, \quad \|\nabla_{\theta} \ell(z; \theta) - \nabla_{\theta} \ell(z'; \theta)\|_2 \leq \beta \|z - z'\|_2, \quad (A1)
$$

for all $\theta, \theta' \in \Theta$ and $z, z' \in Z$.

(strong convexity) We say that a loss function $\ell(z; \theta)$ is γ-strongly convex if

$$
\ell(z; \theta) \geq \ell(z; \theta') + \nabla_{\theta} \ell(z; \theta')^T (\theta - \theta') + \frac{\gamma}{2} \|\theta - \theta'\|_2^2, \quad (A2)
$$

for all $\theta, \theta' \in \Theta$ and $z \in Z$. If $\gamma = 0$, this assumption is equivalent to convexity.
Assumptions

Definition 3.1 (ε-sensitivity). We say that a distribution map $\mathcal{D}(\cdot)$ is ε-sensitive if for all $\theta, \theta' \in \Theta$:

$$W_1\left(\mathcal{D}(\theta), \mathcal{D}(\theta')\right) \leq \varepsilon \|\theta - \theta'\|_2,$$

where W_1 denotes the Wasserstein-1 distance, or earth mover’s distance.
Convergence to a stable point through RRM

\[G(\theta) := \arg\min_{\theta'} \mathbb{E}_{Z \sim D(\theta)}[\ell(Z; \theta')] \]

Theorem 3.5. Suppose that the loss \(\ell(z; \theta) \) is \(\beta \)-jointly smooth (A1) and \(\gamma \)-strongly convex (A2). If the distribution map \(D(\cdot) \) is \(\varepsilon \)-sensitive, then the following statements are true:

(a) \(\|G(\theta) - G(\theta')\|_2 \leq \varepsilon \frac{\beta}{\gamma} \|\theta - \theta'\|_2 \), for all \(\theta, \theta' \in \Theta \).

(b) If \(\varepsilon < \frac{\gamma}{\beta} \), the iterates \(\theta_t \) of RRM converge to a unique performatively stable point \(\theta_{PS} \) at a linear rate: \(\|\theta_t - \theta_{PS}\|_2 \leq \delta \) for \(t \geq \left(1 - \varepsilon \frac{\beta}{\gamma} \right)^{-1} \log \left(\frac{\|\theta_0 - \theta_{PS}\|_2}{\delta} \right) \).
Proof idea

1. Part (b) follows from (a) by the Banach fixed-point theorem
2. Focus on showing that G is a contraction mapping
 a. Strong convexity upper bounds squared G-distance
 b. Sensitivity and smoothness lower bound G- and param-distance
 c. Combine resulting inequalities
Do we need these assumptions?

Proposition 3.6. Suppose that the distribution map $D(\cdot)$ is ϵ-sensitive with $\epsilon > 0$. RRM can fail to converge at all in any of the following cases, for any choice of parameters $\beta, \gamma > 0$:

(a) The loss is β-jointly smooth and convex, but not strongly convex.

(b) The loss is γ-strongly convex, but not jointly smooth.

(c) The loss is β-jointly smooth and γ-strongly convex, but $\epsilon \geq \frac{\gamma}{\beta}$.
Other interesting results

Theorem 3.8. Suppose that the loss $\ell(z; \theta)$ is β-jointly smooth (A1) and γ-strongly convex (A2). If the distribution map $D(\cdot)$ is ε-sensitive with $\varepsilon < \frac{\gamma}{(\beta + \gamma)(1 + 1.5\eta \beta)}$, then RGD with step size $\eta \leq \frac{2}{\beta + \gamma}$ satisfies the following:

(a) $\|G_{gd}(\theta) - G_{gd}(\theta')\|_2 \leq (1 - \eta)$

(b) The iterates θ_t of RGD converge and that there exist $\alpha > 1, \mu > 0$ such that $\xi_{\alpha, \mu} \overset{\text{def}}{=} \int_{\mathbb{R}^n} e^{\|x\|^\alpha} dD(\theta)$ is finite $\forall \theta \in \Theta$. Let $\delta \in (0, 1)$ be a radius of convergence. Consider running RERM or RGD with $n_t = O\left(\frac{1}{(\varepsilon \delta)^m} \log \left(\frac{t}{p}\right)\right)$ samples at time t.

(a) If $D(\cdot)$ is ε-sensitive with $\varepsilon < \frac{\gamma}{2\beta}$, then with probability $1 - p$, RERM satisfies,

$$
\|\theta_t - \theta_{PS}\|_2 \leq \delta, \text{ for all } t \geq \frac{\log \left(\frac{1}{2}\|\theta_0 - \theta_{PS}\|_2\right)}{1 - \frac{2\varepsilon \beta}{\gamma}}.
$$

(b) If $D(\cdot)$ is ε-sensitive with $\varepsilon < \frac{\gamma}{(\beta + \gamma)(1 + 1.5\eta \beta)}$, then with probability $1 - p$, REGD with step size $\eta \leq \frac{2}{\beta + \gamma}$ satisfies,

$$
\|\theta_t - \theta_{PS}\|_2 \leq \delta, \text{ for all } t \geq \frac{\log \left(\frac{1}{2}\|\theta_0 - \theta_{PS}\|_2\right)}{\eta \left(\frac{\beta \gamma}{\beta + \gamma} - \varepsilon (3\eta \beta^2 + 2\beta)\right)},
$$

for a constant choice of step size $\eta \leq \frac{2}{\beta + \gamma}$.
Remaining Issues
SGD analysis?

Stochastic Optimization for Performative Prediction

Celestine Mendler-Dünner* Juan C. Perdomo* Tijana Zrnic* Moritz Hardt†
{mendler, jcperdomo, tijana.zrnic, hardt}@berkeley.edu

University of California, Berkeley
Types of Distribution Shift

\[P_\theta(X) \neq P_{\theta'}(X) \quad P_\theta(Y \mid X) = P_{\theta'}(Y \mid X) \]

\[P_\theta(Y \mid X) \neq P_{\theta'}(Y \mid X) \]

\[P_\theta(Y \mid \Phi(X)) = P_{\theta'}(Y \mid \Phi(X)) \]

\[\mathcal{D}_t(\theta) \neq \mathcal{D}_{t+1}(\theta) \]
Stability under different learning algorithms

Invariant Risk Minimization

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, David Lopez-Paz

$$\min_{\Phi : \mathcal{X} \to \mathcal{H}} \sum_{e \in \mathcal{E}_{tr}} R^e(w \circ \Phi)$$

subject to $$w \in \arg \min_{\bar{w} : \mathcal{H} \to \mathcal{Y}} R^e(\bar{w} \circ \Phi), \text{ for all } e \in \mathcal{E}_{tr}.$$
Questions?