Expressivity, Complexity, Learnability

Failures of Gradient-Based Deep Learning, 2017
Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah

Martin Weiss
PhD Student

.
\I

o
()
o
I/l\l/l\l
/I\

M|Ia
@McGlll

|/

XOR EGGSOR

Agenda:

1. Expressivity and Complexity
2. Failures of Gradient Descent (Learning Parity + Linear-Periodic Functions)
3. inductive bias

Input | Output
A xor B

RlR|lo|lo]>
Rlol~|lo|m
[EY

O Inputs Weights Summation and Bias Nonlinear Function Activation

XOR(x1, X5)

X2

A 4

Perceptron

X1

Expressivity: Recall that this is not going to work

Input | Output
A xor B

== (o] (el b
=lol—|Oo|W
=

1 Layer
Output
O a W(Z)H layer
XOR(x1, X2)
A o ——> O(W(Z)O(W(1)X+ b(1))+b(2))
1 (0]
X2
0
0 T

X1

Expressivity: Recall that this is going to work

not

and

Uh

Expressivity: XOR circuit complexity

/

C

https://en.wikipedia.org/wiki/Adder_(electronics)#/media/File:Halfadder.qgif

Expressivity: Half Adder

Label: 1

Label: 1

Label: O

QQQ@QQ@QQ

Expressivity: XOR is like N-bit Parity

i
o
v,
1

.

Expressivity: N-Bit Parity can be solved with iterated XORs

NAND construction NOR construction

A —e

A—e

D=, D-

B —e

NAND construction Alternative And / Or / Not Construction

IED %}Q s }—}Q

Circuit Complexity and Boolean Algebra

Warren Mcculloch Walter Pitts
1943 1943

Historical Interlude: Mathematical Model of a Neuron

Most Boolean Functions
Require Exponential Circuit Complexity
Claude Shannon
1949

Historical Interlude: Boolean Function Complexity

Expanded Edition

Perceptrons

Perceptrons N
Marvin Minsky & Seymour Papert ey e
1969

Historical Interlude: Parity and Neural Networks

Any Constant-depth Circuit Computing Parity
Requires Exponential Size
John Hastad
1987

Historical Interlude: Boolean Circuit Size

THEOREM 20.2 For every n, let s(n) be the minimal integer such that there
exists a graph (V,E) with |V| = s(n) such that the hypothesis class Hy, g, sign
contains all the functions from {0,1}™ to {0,1}. Then, s(n) is exponential in n.
Similar results hold for Hy g.. where o is the sigmotid function.

Understanding Machine Learning: From Theory to Algorithms
Shai Ben-David and Shai Shalev-Shwartz, 2017

Shallow Networks and Boolean Functions

THEOREM 20.3 LetT : N — N and for every n, let F,, be the set of functions
that can be implemented using a Turing machine using runtime of at most T'(n).

n
Then, there exist constants b,c € Ry such that for every n, there is a graph
(Vo En) of size at most ¢T(n)? + b such that Hy, g, sign contains F.

Understanding Machine Learning: From Theory to Algorithms
Shai Ben-David and Shai Shalev-Shwartz, 2017

Relation of Space and Time Complexity for Boolean Functions

Sawtooths

- Shallow Network: exponential params
- Deep Network: linear params (37 with relu and fc output)
- RNN: constant params

0 1/2 1

Representation Benefits of Deep Feedforward Networks Figure 2: fu, fa, and f3.
Mattus Telgarsky, 2015

Expressivity: Parameter Blowup

Ok! So RNNs are very expressive! Are we done?

(]
)
S

$o0e

NS
\l/‘\
e

I

Mila

Failures of Gradient-Based Deep Learning

https://arxiv.org/pdf/1703.07950.pdf

Shai Shalev-Shwartz, Ohad Shamir, Shaked Shammah. 2017

(d
o
Nl

>

$o0e

1A
\l/‘\ ~
e

Mila

https://arxiv.org/pdf/1703.07950.pdf
https://arxiv.org/pdf/1703.07950.pdf
https://arxiv.org/search/cs?searchtype=author&query=Shalev-Shwartz%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Shamir%2C+O
https://arxiv.org/search/cs?searchtype=author&query=Shammah%2C+S

Expressivity is not always enough,
Learnability and inductive bias matter!

X 7
00 .
00—
[Y x7AY lia
(1Y

We'll prove this for Parity and Linear Periodic Functions

-'-‘-,<, Mila

N.B. The following results are true independent of network architecture

L7
[KRva :
00—
Y xYAY I a
(Y%

Problem Setting: (Recall Statistical Learning Theory)

Goal: learn some hypothesis class h € H responsible for labelling the data

/_
Y
YAY)
e/

/l\

*Mila

Problem Setting: (Recall ERM)

x are the stochastic inputs (assumed to be vectors in Euclidean space
Pw 1s some predictor parameterized by a parameter vector w

o0

070
Sk
S

:
oo
KK

Mila

Problem Setting: (Recall ERM)

x are the stochastic inputs (assumed to be vectors in Euclidean space
Pw 1s some predictor parameterized by a parameter vector w

Assumes F' is differentiable and that VF}(w) contains useful information

Problem Setting: Gradients

What does it mean for the gradient to contain useful information about h?

(d
@
.
-

33
ek
=
Q

Problem Setting: Gradients

What does it mean for the gradient to contain useful information about h?

|V Er(w) =V Ep (w)]|

X 7
.../‘.<_>.\ .
00—
xMila
L L X v

AYA
Y,

Theorem 1 Suppose that

o H consists of real-valued functions h satisfying Ex[h?(x)] < 1, such that for any two distinct h, h' €
H, Ex[h(x)h'(x)] = 0.

e pw(x) is differentiable w.r.t. w, and satisfies Ex ||| a%pw(x)\ﬂ < G(w)? for some scalar G(w).

o The loss function { in (1) is either the square loss ((y,y) = %(Q — y)? or a classification loss of the
form £(y,y) = r(§-y) for some 1-Lipschitz function r, and the target function h takes values in {£1}.

Then
Var(H, F,w) <

Assumption 1: Target functions are orthonormal

o H consists of real-valued functions h satisfying Ex[h?(x)] < 1, such that for any two distinct h, h' €
H, Ex[h(x)h/(x)] = 0.

Assumption 2: Bounded gradient

o pw(X) is differentiable w.r.t. w, and satisfies Ex [||aiwpw(x)|\2] < G(w)? for some scalar G(w).

Assumption 3: Square loss or classification loss

o The loss function { in (1) is either the square loss ((y,y) = %(Q — y)? or a classification loss of the
form £(y,y) = r(y-y) for some 1-Lipschitz function r, and the target function h takes values in {£1}.

Proof Idea

Quantity to investigate: Variance of gradient of F' with respect to h

Assume: h drawn uniformly at random from collection of target functions H

Show that if the functions in ‘H are orthonormal then, for every w,

1
Var(H,F,w) := E,|VFy,(w) — Ep VE, (w)]|* = O<@>

To do so, express each coordinate of Vpy (x) using orthonormal fns in H

SIS

X 7
[O .
...-./—\-
Y YaY i a
(Y Y4

e

-

Proof Setup for Theorem 1

Proof Given two square-integrable functions f, g on an Euclidean space R”, let (f, 9)r, = Ex[f(x)g(x)]
and ||f|lz, = /Ex[f?(x)] denote inner product and norm in the Ly space of square-integrable functions
(with respect to the relevant distribution). Also, define the vector-valued function

0

8%) = P ().

and let g(x) = (g1(x), g2(x), ..., gn(x)) for real-valued functions g1, ..., g,. Finally, let E; denote an
expectation with respect to h chosen uniformly at random from . Let |H| = d.

G 7aN

.. AVAY
s=>Mila

AV

Proof Setup for Theorem 1: (Squared Loss)

We begin by provmg the result for the squared loss. To prove the bound, it is enough to show that

Ep [|[VE,(w)—al? < \H\ for any vector a independent of h. In particular, let us choose a = Ex [pw(x)g(x)].

JAY
..'/i—/\
WA

(d
o
.

%>Mila

...
o9
e
N\, /I
N,

Proof of Theorem 1: (Squared Loss)

We thus bound the following:

E[[VEy(w) = E [pw(x)g(x)] [= E [E [(pw(x) — h(x)) &(x)] — E [pw (x)g(x)] ||

Pw(x) is the output of our predictive model

g(x) is the gradient with respect to pw(x)

Proof of Theorem 1

We thus bound the following:

E([VFy(w) — E [pw (x)g(x)]

X 7
...;.<_>.\ .
00—
Y xYAY I a
(Y Y4

Proof of Theorem 1

We thus bound the following:

E[[VEy(w) = E [pw(x)g(x)] [= E [E [(pw(x) — h(x)) &(x)] — E [pw (x)g(x)] |

X 7
...;.<_>.\ .
00—
Y xYAY I a
(Y Y4

Proof of Theorem 1

We thus bound the following:

E[|[VEu(w) — E [puw()8(x)] I = E || E [(pw(x) — h(x)) g(x)] — E [pw (x)g()

X 7
...;.<_>.\ .
00—
Y xYAY I a
(Y Y4

Proof of Theorem 1

We thus bound the following:

E[[VEy(w) = E [pw(x)g(x)] [= E [E [(pw(x) — h(x)) &(x)] — E [pw (x)g(x)] |

h
2 - ?
=E | E[h(x)gH)] | = Igg(E h(x)g;(x)))
n n 1 d
~EY it = 3 (e
) o [1 5
5> (ol

where () follows from the functions in 4 being mutually orthogonal, and satisfying ||h||z, < 1 for all

h € H.

Proof of Theorem 1

We thus bound the following:

E[[VEy(w) = E [pw(x)g(x)] [= E [E [(pw(x) — h(x)) &(x)] — E [pw (x)g(x)] |

j=1
n n 1 d

:IE’ <h’7gj>%2 = <— Z<hiagj>%2>
j=1 j=1 i=1

23 (o) = o S B0

. = ‘H‘ JU Lo ‘le p s)

norm in the Lo space of square-integrable functions || f| ., = /Ex[f?(x)]

Proof of Theorem 1

We thus bound the following:

E[|[VEu(w) — E [pw(0g()] I = E | E [(pw(x) — () g(x)] — E [pw (x)g ()] |

o pw(X) is differentiable w.r.t. w, and satisfies Ex [Haiwpw (x)|I?] < G(w)? for some scalar G(w).

Proved gradient variance decreases linearly as hypothesis space increases ‘

Theorem 1 Suppose that

o H consists of real-valued functions h satisfying By [h?(x)] < 1, such that for any two distinct h, h' €
H, Ex[h(x)h/(x)] = 0.

o pw(x) is differentiable w.r.t. w, and satisfies Ex ||| %pw(x)ﬂﬂ < G(w)? for some scalar G(w).

o The loss function ¢ in (1) is either the square loss ((y,y) = %(Q — y)? or a classification loss of the
form L(7,y) = r(y-y) for some 1-Lipschitz function r, and the target function h takes values in {+1}.

Then
Var(H, F,w) <

Now let’s look at n-bit parity again

-'-‘-,<, Mila

Formalizing the N-Bit Parity Problem

Hypothesis space:

set of 2¢ functions H = {x (—1)<X’V*> : v* e {0, 1}d}

Problem Setup: find y indicating number of positive bits is even on some subset of x

goal is to train a predictor mapping x € {0,1}% to y = (—1)&V"

/l\

Mlla

/l\ /[\

Applying Theorem 1 to the N-Bit Parity Problem

/
for any v, v,

o H consists of real-valued functions h satisfying Ex[h?(x)] < 1, such that for any two distinct h, h' €
H, Ex[h(x)h/(x)] = 0.

Applying Theorem 1 to the N-Bit Parity Problem

/
for any v, v,

()

B [y tn] = [T CLE)70

=1 =1

o H consists of real-valued functions h satisfying Ex[h?(x)] < 1, such that for any two distinct h, h' €
H, Ex[h(x)h/(x)] = 0.

Applying Theorem 1 to the N-Bit Parity Problem

/
for any v, v,

()

B [y tn] = [T CLE)70

=1 =1

which is non-zero if and only if v = v’.

|.e., it satisfies this condition from the theorem:

o H consists of real-valued functions h satisfying Ex[h?(x)] < 1, such that for any two distinct h, h' €

H, Ex[h(x)h/(x)] = 0.

So for parity, gradient becomes exponentially small in d

by Theorem 1, we get that Var(H, F, w) < G(w)?/2¢

e

$23%
)

o%0?

0%

o
2Kl

Results on Parity Learning

>
Q
o]
—
=
Q
Q
<

X 72
...;.<_>.\ .
00—
Y xYAY I a
(Y'Y

Fy(w) = Ex|[(cos(wl'x)—h(x))?] for h(x) = cos([2,2]Tx), in 2-d, x ~ N(0,])

0.5 .. .-

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016

Difficulty of Learning Linear-Periodic Functions

Fy(w) = Ex|[(cos(wl'x)—h(x))?] for h(x) = cos([2,2]Tx), in 2-d, x ~ N(0,])

No Local Minima
No Saddle Points 47
Extremely flat unless very close to optimum

Difficult for any local search (including gradient descent)

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016

Difficulty of Learning Linear-Periodic Functions

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016

Difficulty of Learning Linear-Periodic Functions

Theorem 2 (Shamir 2016) Let v be a fixed periodic function, and let H = {x + p(v*'x) : [|[v*| = r}

for some r > 0. Suppose x € R? is sampled from an arbitrary mixture of distributions with the following

fx:||x|| - ¢7(x)dx
[

property: The square root of the density function p has a Fourier transform ¢ satisfying

exp(—$(r)). Then if F denotes the objective function with respect to the squared loss,

Var(H, F,w) < O (exp(—Q(d)) + exp(—(r))) .

Reasonable learning methods will fail unless number of iterations is exponentially large in r and d!

Distribution-Specific Hardness of Learning Neural Networks
Ohad Shamir. 2016

Difficulty of Learning Linear-Periodic Functions

So what can you do about it?

Reformulate the problem (ask a different question)

Decompose the problem and add supervision

Optimize an alternative objective (or sometimes random guessing!)
Change the geometry through inductive bias

BN =

Inductive Bias Corresponding property
Distributed representations Patterns of features
Convolution group equivariance (usually over space)
Deep architectures Complicated functions = composition of simpler ones
Graph Neural Networks equivariance over entities and relations
Recurrent Nets equivariance over time
Soft attention equivariance over permutations

Table 1: Examples of current inductive biases in deep learning

Anirudh Goyal, Yoshua Bengio. Arxiv 2021

Inductive Biases for Deep Learning of Higher-Level Cognition

https://arxiv.org/pdf/2011.15091.pdf

Num Pieces: k=3
Num Points: n=100

N

Failures of Gradient-Based Deep Learning (Section 4)

Inductive Biases: Helping to Encode 1-d Piecewise Linear Function §§§Z—M|Ia

—
—
AN
AN

linear converges in () (n3°5)

(a) Section 4.1.1’s experiment - linear architecture.

Convolutional converges in @(n3)

< =
—
—
N
AN
ANEIAN

(b) Section 4.1.2°s experiment - convolutional architecture.

Conv w/ conditioning converges in O(log(1/¢))

—
—
—
AN
AN
AN

(c) Section 4.1.3’s experiment - convolutional architecture with conditioning.

3 layer relu autoencoder

P
<
-
AN
AN
AN

(d) 4.1.4°s experiment - vanilla auto encoder.

Figure 5: Examples for decoded outputs of Section 4’s experiments, learning to encode PWL curves. In
blue are the original curves. In red are the decoded curves. The plot shows the outputs for two curves, after
500, 10000, and 50000 iterations, from left to right.

Learning Piecewise Linear Functions

Thank you for your time!

And remember, by careful trying to learn Parity and Linear Periodic Functions

e)

[Combinational logic)

Finite-state machine

recursively enumerable

context-sensitive

context-free

K Pushdown automaton /
@ K Turing Machine /
Chomsky Hierarchy Automata Hierarchy

Computability: Automata and Formal Languages

A recursively enumerable language is a recursively enumerable subset in the
set of all possible words over the alphabet of the language.

recursively enumerable

context-sensitive

context-free
a"b"

regular
abc

Chomsky Hierarchy

- o)
Combinational logic
Finite-state machine
K Pushdown automaton /
K Turing Machine /

Automata Hierarchy

Computability: Automata and Formal Languages

recursively enumerable » _
Take a"b" , if in practice n <= N

context-sensitive

Regular Language (N+1 rules) CFG (2 rules)
context-free
anbn
regular g|(ab)|(aabb)|(aaabbb)|... sEJasb
Sade

abc

Chomsky Hierarchy

Computability: Automata and Formal Languages

A hypothesis about the nature of computable
functions stating that a function on the natural
numbers can be calculated by an effective
method if and only if it is computable by a
Turing machine.

< 3 :.

Alonzo Church Alan Turing
1903 - 1995 1912 - 1954

Computability: Church-Turing Thesis

e Consists of a finite number of exact, finite instructions.
e When itis applied to a problem from its class:
o It always finishes after a finite number of steps
o It always produces a correct answer
e In principle, it can be done by a human without any aids except writing materials.
e lIts instructions need only to be followed rigorously to succeed.

Computability: Effective Method

Which neural networks are computationally universal (i.e. Turing Complete)?

Q: Which neural networks are computationally universal (i.e. Turing Complete)?
A: Not feed forward networks

D ([1)y [CC))1

Dy (<>[{3}1<>)

Computability: Dyck-n

Transformers:

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm
[_Add & Norm] .
Sadiatiion Multi-Head
Feed Attention
Forward 7 Nx
— |
s Add & Norm
f-" Add & Norm | Vasked
Multi-Head Multi-Head
Attention Attention
1t 1
] J —
Positional o) @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

https://arxiv.org/pdf/1706.03762.pdf

t t t

[Feed Forward]

t t t
1 5 o = [] LT 1]
t t t
[Self-Attention
f f f

[L[] L[]

Taken from the lllustrated Transformer (http://jalammar.qithub.io/illustrated-transformer/)

Transformers: Encoder Layer

http://jalammar.github.io/illustrated-transformer/

e~ A= V A~

vV A

HVVAAHVHI—AA

~

T(<>[{}1<>)

Javid Ebrahimi, Dhruv Gelda, Wei Zhang. EMNLP 2020

https://www.aclweb.org/anthology/2020.findings-emnlp.384.pdf

proves limitations on the achievable cross-entropy in modeling distributions over the formal languages

Argument relies on smoothness of the operations used in transformers to show that any
transformer, as inputs get longer, will not be able to model Parity or Dyck-2.

Michael Hahn. Arxiv 2020

https://arxiv.org/pdf/1906.06755.pdf

Lemma 5. Let a soft attention transformer be
given, and let n be the input length. If we exchange
one input symbol x; (i < n), then the change in
the resulting activation y,gL) at the decoder layer
is bounded as O(L) with constants depending on

the parameter matrices.

Michael Hahn. Arxiv 2020

https://arxiv.org/pdf/1906.06755.pdf

Output Probabilities

t

[Softmax]

T After T steps

()
[Recurrent i
r \ Decoder [Transition Function]
_ . Block \
.
Recurrent - : After T steps . . g
Encoder [Transition Function] >[Multihead Attention] —
Block n Y 1 g
e ©
| Multihead Self-Attention | - | Multihead Self-Attention | v
A @)
. J/ 8 . J
- . R ’

[Embed Input Symbols] [Embed Target Symbols]

; i

Input Sequence Target Sequence (right-shifted by one)

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, tukasz Kaiser. ICLR 2019

: Architecture

https://arxiv.org/pdf/1807.03819.pdf

Copy Reverse Addition

Model

char-acc seq-acc char-acc seq-acc char-acc seq-acc
LSTM 0.45 0.09 0.66 0.11 0.08 0.0
Transformer 0.53 0.03 0.13 0.06 0.07 0.0
Universal Transformer 0.91 0.35 0.96 0.46 0.34 0.02

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, tukasz Kaiser. ICLR 2019

: Results

https://arxiv.org/pdf/1807.03819.pdf

Model BLEU

Universal Transformer small 26.8
Transformer base (Vaswani et al., 2017) 28.0
Weighted Transformer base (Ahmed et al., 2017) 28.4
Universal Transformer base 28.9

Table 7: Machine translation results on the WMT 14 En-De translation task trained on 8xP100 GPUs
in comparable training setups. All base results have the same number of parameters.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, tukasz Kaiser. ICLR 2019

: Results

https://arxiv.org/pdf/1807.03819.pdf

With respect to their computational power, the key difference between the Transformer and the Universal
Transformer lies in the number of sequential steps of computation (i.e. in depth). While a standard Transformer
executes a total number of operations that scales with the input size, the number of sequential operations is
constant, independent of the input size and determined solely by the number of layers. Assuming finite precision,
this property implies that the standard Transformer cannot be computationally universal. When choosing a number
of steps as a function of the input length, however, the Universal Transformer does not suffer from this limitation.
Note that this holds independently of whether or not adaptive computation time is employed but does assume
a non-constant, even if possibly deterministic, number of steps. Varying the number of steps dynamically after
training is enabled by sharing weights across sequential computation steps in the Universal Transformer.

An intuitive example are functions whose execution requires the
sequential processing of each input element. In this case, for any
given choice of depth 7', one can construct an input sequence of
length N > T that cannot be processed correctly by a standard
Transformer. With an appropriate, input-length dependent choice of
sequential steps, however, a Universal Transformer, RNNs or Neural
GPUs can execute such a function.

“N” computational steps (layers)

—

mE = =
N m
=
m/-/ HE B =
M O OO O
==l ===

“N” input symbols

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, tukasz Kaiser. ICLR 2019

. Expressivity

https://arxiv.org/pdf/1807.03819.pdf

Theorem 3. (Universality of Weight-tied Deep Networks) Consider a traditional L-layer deep
network defined by the relation

20T = (Wl L bl i=0,...,L—1, 2z=x a7

where zU! denotes the hidden features at depth i, WU, bl) are parameters of the network, o1V is the
non-linearity at depth i, and x is the original input. Then the same network can be represented by a

' weight-tied, input-injected network of equivalent depth
it = oW,z + Wox +Db), i=0,...,L—1. (18)
where o, W, W, and b are constant over all layers.

Proof of Theorem 3. The proof is constructive: we build the weight-tied network equivalent to the
original network by contructing the relevant matrices using a simple “shift” operation. In particular,
we define the network parameters as

0 0 . 0 0
wil o L. 0 0 V[{)[U] Efﬂ "E
w.—| 0 wBE .0 0|y b= o= | 7
(,) 0 . W[l./—l] 0 0 blL—1 o1l
19
It is clear from inspection that after L applications of the layer, i.e.,
zZl = o(W, 2 + Wox + b) (20)
using these parameters the hidden vector z will take on the value
(2]
Z
A= | 7| @n

Thus the weight-tied network computes all the same terms as the original network, using the same
depth as the original network, and with a hidden unit size that is just the sum of the individual hidden
unit sizes in the original network. This establises the claim of the theorem. O

Universality of Weight-tied Deep Networks

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, tukasz Kaiser. ICLR 2019

: Theorem

https://arxiv.org/pdf/1807.03819.pdf

21 =

)
Wi ()| Wi
. = ; Zziri =o(Wizi+b;),i=1,..., k-1
2k

4

Normal Net h(z) = Wiz, + by

(OO O]
=

L O00O0)
=

(OO0 O0)]
=

i

L
J
L
J
)

Weight-Tied U %%
Input-Injected . > —> —> 2z =o(Wz +Uz+b),i=1,...,k—1
Network h(z) = W2k + by

O
O
O
o

(OO0 O]

http://implicit-layers-tutorial.org/deep_equilibrium_models/

\/

ZZ'+1:O'(WZZ‘+UCU+I)) 72 — 00

W W 2*=0(Wz*+ Uz +b)

T
O
v |O
.
2

DEQ Models: Fixed Point Iteration

(OO0 O0OK

\/

ZZ'+1:O'(WZZ‘+UCU+I7) 7 — 00

W W 2*=0(Wz*+ Uz +b)

Possibilities:
1. Divergence
2. Oscillation (periodically or chaotically)
3. Convergence (to a fixed point)

T
O
v |O
.
2

DEQ Models: Fixed Point Iteration

(OO0 O0OK

Deep Equilibrium Models: How to model this thing?

Deep Equilibrium Models: Implicit Layers

Any deep network (of any depth, with any connectivity), can be represented as a single layer DEQ model

Proof: Consider a traditional composition of two functions ¥ = g2 (g1 (z)), we can transform
this into a single layer DEQ by simply concatenating all the intermediate terms of this
function into a long vector:

e =1 ([5)#) = s

At the equilibrium point of this function, z*, we have:

2 = f(2,2) = =z =a(2), 2% = 0:(2}) = 92(01 (@)

Deep Equilibrium Models: Expressivity

Any deep network (of any depth, with any connectivity), can be represented as a single layer DEQ model

Analysis: This logic applies to any computation graph, concatenating all intermediate products
of a computation graph into the vector z, and having the function f be the function
that applies the “next” computation in the graph to each of these elements.

This is much more inefficient than just computing the original network, and not the
construction used in practice.

Deep Equilibrium Models: Expressivity

