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Random Matrix Theory

Consider a matrix A:

A =



a11 a12 a13 . . . . . . a1N

a21 a22 a23 . . . a2N

a31 . . .
...
...
...

aM1 aN2 . . . aMN


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where the entries are random numbers:

A =



∗ ∗ ∗ . . . . . . ∗
∗ ∗ ∗ . . . ∗
∗ . . .
...
...
...
∗ ∗ . . . ∗



where ∗ =

(Gaussian distribution, e.g.)
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A few questions:

What about the eigenvalues?

x_1 x_nx_2 x_3 ...

Their (probable) positions will depend upon the probability
distribution of the entries of the matrix in a non-trivial way. There are
different statistical quantities that one may study (-discrete- spectral
density, gap probability, spacing, etc.)
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What if we consider BIG matrices, possibly of ∞ dimension
(appropriately rescaled)?

Figure: Realization of the eigenvalues of a GUE matrix of dimension
n = 20, 50, 100.
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Figure: Histograms of the eigenvalues of GUE matrices as the size of the matrix
increases.
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Figure: Histograms of the eigenvalues of GUE matrices as the size of the matrix
increases.
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Figure: Histogram of the eigenvalues of Wishart matrices as the size of the matrix
increases (here c = p/n).
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Applications

Nuclear Physics (distribution of the energy levels of highly excited
states of heavy nuclei, say uranium 92U)
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Applications

Wireless communications
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Applications

Finance (stock markets, investment strategies)
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Applications

Very helpful in ML!

Figure: The histogram of the eigenvalues of the gradient covariance matrix
1
n

∑
∇Li∇LT

i for a Resnet-32 with (left) and without (right) BN after 9k

training steps. (from Ghorbani et al., 2019)
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Thanks for your attention!

“Unfortunately, no one can be told what the Matrix is.
You have to see it for yourself.”

(Morpheus, “The Matrix” movie)
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