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1 Summary
In the previous lecture we introduced the basics of Statistical Learning Theory. We established the setting for PAC
Learning and defined the concepts of risk, empirical risk and generalization gap. We then used the Hoeffding’s
Inequality to establish a bound on the generalization gap for finite hypothesis classesH.
In this lecture we continue our crash course on Statistical Learning Theory by introducing new concepts in order to
get tighter bounds on the generalization gap, namely Occam’s (Razor) Bound and PAC Bayesian learning.

2 PAC Learning
In this section we recap our notation from last time. Probably Approximate Correct (PAC) Learning is a framework
for analyzing machine learning algorithms.
Assume that we have a hypothesis class H - the set of all possible model configurations - and a set of samples that
form our dataset S = {z1, z2, ..., zn} with zi = (xi, yi) and zi ∼ D i.i.d - where D is the data distribution. Assume
also that we have defined a bounded function l : Y × Y → [0, 1] (loss function) that quantifies the mismatch between
two elements of Y . In this PAC Learning setting, we define the performance of a hypothesis using:

Definition 1 (Risk).
R[h] = E(x,y)∼(D)[l(h(x), y)]

Recall that we do not have access to the data generating procedure,D, so we resort to using the empirical risk evaluated
on our data set, S:

Definition 2 (Empirical Risk).

R̂s[h] =
1

n

n∑
i=1

l(h(xi), yi) =
1

n

n∑
i=1

l(h, zi)

Since we can only use S to discover hypotheses, hs, we define a generalization gap based on how well hs does on the
true risk (Equation 1):

Definition 3 (Generalization Gap).
εgen(hs) = |R[hs]− R̂s[hs]|

Our main result gave us a bound on the sample size:

Theorem 4. For all h ∈ H, If

n = O

(
log( |H|δ )

ε2

)
then with probability at least 1− δ: ∣∣R[h]− R̂S [h]∣∣ < ε
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Recall that to get this result we bounded P
(∣∣R[hs] − R̂S [hs]∣∣ > ε

)
by P

(⋃
h∈H

∣∣R[h] − R̂s[h]∣∣ > ε
)
. The reason

why we couldn’t just apply Hoeffding’s inequality directly on P
(∣∣R[hs] − R̂S [hs]∣∣ > ε

)
is because the term R̂S [hs]

is not the average of i.i.d random variables.
If we look closely at the term

R̂S [hs] =
1

n

∑
∀z∈S

l(hs, z)

hs is constructed based on the data z ∈ S. These same z ∈ S are used in the selection of hs and used again in the
losses l(hs, z) ∀z ∈ S making them dependent. When we consider h to be arbitrarly chosen, then R̂S [h] doesn’t suffer
from the dependence problem which makes it an average of independent random variables.

3 Occam’s (Razor) bound
Simply put, Occam’s bound tells us to put a distribution over the countably infinite hypothesis classH that is indepen-
dent of dataset S we will receive. This can be thought of as “placing our bets” on the different hypotheses h ∈ H prior
to seeing the actual data. We call this distribution the prior P on the hypothesis class H. We will see that in doing
so we will get bounds on the generalization gap that no longer depend on the size of the hypothesis class, |H|. These
bounds now become variable depending on how we weigh each individual hypothesis h, i.e. P (h).
This analysis will use the assumption that H is discrete (countable) in order to use the union bound. Also, we will
assume that the loss function l(h, z) is bounded in order to use Hoeffding’s inequality. Without loss of generality
assume it’s bounded on the interval [0, 1].

Theorem 5. (McAllester [1]) Given a prior distribution P on H,
∑
∀h P (h) = 1, with probability at least ≥ 1 − δ

over S ∼ Dn we have that the following holds true for all h ∈ H:

R[h] ≤ R̂S [h] +

√
ln 1
P (h) + ln 2

δ

2n

Proof. This proof follows the same outline as the one seen for PAC learning. For an arbitrary hypothesis h we demand
that:

PS∼D(|R̂s[h]−R[h]| > ε) ≤ δP (h)
Recall that, by Hoeffding’s inequality, we have that:

PS∼D(|R̂s[h]−R[h]| > ε) ≤ 2e−nε
2

we can solve for ε by solving 2e−nε
2

= δP (h) and get ε =
√

ln 1
P (h)

+ln 2
δ

2n . Let’s call this quantity ε(h).

Given this, we can proceed to bounding our hypothesis of interest, hS :

PS∼D(|R̂s[hS ]−R[hS ]| > ε(h)) ≤ PS∼D
(⋃
∀h

|R̂s[h]−R[h]| > ε
)

≤
∑
∀h

PS∼D(|R̂s[h]−R[h]| > ε)

≤
∑
∀h

δP (h) = δ

We used the union of all the hypothesis h to bound our hypothesis of interest hS . line 2 follows from the union bound.
What this tells us is that with probability at least 1− δ we have:

|R̂s[hS ]−R[hS ]| ≤

√
ln 1
P (h) + ln 2

δ

2n

Which is what we wanted to show.
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Notice that this bound is no longer dependent on |H| and instead has the term ln 1
P (h) . If our prior distribution gives

more probability to h than this term will decrease therefore giving a tighter bound and vise versa. If, however, we
don’t give any probability to a hypothesis h (i.e P (h) = 0) than ln 1

P (h) will be undefined which provides a vacuous
bound.

Figure 1: Visual representation of the bounds on all h’s. The top part represents all different hypotheses with an
uniform bound. The lower part represents the region of interest in which we want a stronger “bet”. Here the bound is

tighter for hypotheses where we placed more probability (“bigger bet”).
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Figure 2: Example: Consider a simple linear classifier with 2 weights ~w = (w1, w2), which are stored using a 32 bit
floats. This implies that the hypothesis class is finite with |H| = 232×2. Consider also that the loss function is

bounded and has a regularization term of the form λ||~w||. The regularization term forces the weights to be as small as
possible and corresponds to a prior P with higher probability assigned to ~w near the origin. In doing so we will get
tight theoretical bounds for desirable hypotheses. Notice that this says nothing about the algorithm itself, we are just

affecting how good our bounds are.

4 PAC Bayes
In PAC Bayes the basic idea is that we add a “posterior” Q on H, in addition to the prior P we already had in the
Occam’s Bound. The basic recipe we follow is:

1. Set our “bets” using the prior, P , independent of the data.

2. We then collect some finite dataset S ∼ D.

3. Select a posterior, Q, based on the data.

With the addition of this posterior, we can derive a new bound on the generalization gap that depends on the KL-
divergence between the prior and the posterior:

Theorem 6 (PAC Bayes bound). Given a prior probability distribution P over a hypothesis class H and a posterior
probability distribution Q over H. Then:

Eh∼Q[R[h]] ≤ Eh∼Q[R̂S [h]] +

√
D(Q||P ) + ln(nδ )

2(n− 1)

with probability ≥ 1− δ.

where

Definition 7 (Kullback-Leibler Divergence). The Kullback-Leibler (KL) divergence between two distributions Q and
P is defined as:

D(Q||P ) = Eh∼Q
[
ln
Q(h)

P (h)

]
is a measure of how close two probability distributions are1. In Theorem 6, the KL-divergence serves as a complexity
measure.

1The KL-divergence is not symmetric - D(Q||P ) 6= D(P ||Q) - and therefore is not a metric. Also note that P = Q ⇐⇒ D(P ||Q) = 0.
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If we update our distribution over hypotheses using the posterior, Q, so that h performs well on the empirical risk, it
ensures that we can reduce Eh∼Q[R̂S [h]] more than if we just sampled from the prior. However, we need to be careful
of the complexity term that bounds our generalization on the true data distribution. If we choose a “good” posterior
that is close to the prior, then the KL-divergence will become smaller and our bound will be tighter.
Here are some examples of posteriors:

1. Q assigns hS a probability of 1, i.e. Eh∼Q[h] = hS . This means that KL(Q||P )→∞ and the bound explodes.

2. The posterior and the prior are the same, Q = P . This means that KL(Q||P ) = 0 and the bound becomes tight.
Even though this bound is tight, it is tight for hypotheses we may not care about, i.e. Eh∼P [R̂S [h]] can be large.

References
[1] D. McAllester. A PAC-Bayesian Tutorial with A Dropout Bound. ArXiv e-prints, July 2013.

5


	Summary
	PAC Learning
	Occam's (Razor) bound 
	PAC Bayes

