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Elements of statistical learning theory

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes Instructor: Ioannis Mitliagkas
Winter 2019: Mingde (Harry) Zhao & Dylan Troop
Winter 2018: Brady Neal and Matthew Scicluna

1 Summary

In the previous lecture we dove into the details of Nesterov’s accelerated gradient descent and made thorough com-
parisons with Polyak’s momentum (the heavy ball method). In this lecture we will start discussing statistical learning
theory, the goal of which is to determine how well a model performs on unseen data.

Lecture Narrative:

• Define the generalization gap and illustrate why it is the focus of our study

• Introduce Markov’s inequality, Chebyshev’s inequality, Chernoff’s bound

• Introduce Hoeffding’s Inequality and the Union Bound

• Prove a bound on the generalization gap for countable, finite hypothesis classes using Hoeffding’s Inequality
and the Union Bound

2 Introduction and Notation

The goal in machine learning is not to perform well on training data, but to perform well on unseen data. We say that
a model “generalizes well” if it performs roughly the same on test data as it does on training data. Statistical learning
theory is largely concerned with theoretical bounds on this difference in performance, also known as the generalization
gap. In this lecture, we focus specifically on binary classification, but these results can be easily extended to multiclass
classification.

Notation:

• X - domain set (input space)

• Y - label set (output space)

• n - number of training examples

• S = {(x1, y1), (x2, y2), . . . , (xn, yn)} - training set where (xi, yi) ∈ X × Y

• D - distribution over the data. That is, (xi, yi) ∼ D. Note that in our setup we have a joint distribution rather
than just xi being random and yi being a deterministic function of xi

• H - hypothesis class (class of possible models we can learn; examples below)

– HSVM: class of possible SVMs on a dataset
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– HLR: class of possible logistic regression models on a dataset

– HNN: class of possible neural networks of a fixed architecture on a dataset

– H ⊂ {h : X → Y}: H is a subset of all possible functions that map from input space to output space.
Choosing this subset (hypothesis class),H, introduces inductive bias.

– In the example of binary classification on a d dimensional real-valued dataset, we have h(xi) = ŷi where
h ∈ H, xi ∈ Rd ≡ X , ŷi ∈ {0, 1} ≡ Y

• `(ŷ, y): loss, or error, function that measures the difference between the prediction, ŷ, and the true label, y (e.g.
0-1 loss, squared loss, etc.)

– `0−1(ŷ, y) = 1(ŷ 6= y)

– `squared(ŷ, y) = (ŷ − y)2

3 Empirical Risk Minimization and Generalization Gap

The goal is to identify the hypothesis h ∈ H that gives the best performance on D. If we knew D then we could
evaluate h via the risk:

Definition 1 (True Risk).
R[h] ≡ E(x,y)∼D[l(h(x), y)]

Definition 2 (Empirical Risk).

R̂S [h] ≡ 1

n

n∑
i=1

l(h(xi), yi)

The essential task of supervised learning is to maximize the performance on all of the possible data via the adjustment
of h on a particularly drawn sample set S, which is often regarded as “generalization”. The difference between
performance of h on S and on D is the thing we want to minimize.

Definition 3 (Generalization Gap). Given an sample set S = (xi, yi), i ∈ {1, . . . , n}, drawn i.i.d. from D, a
hypothesis hS learnt on S, and a specific definition of loss l, the generalization gap is defined as

εgen(hS) = |R[hS ]− R̂S [hS ]|

One of the most featured results of statistical learning theory is upper bounding this generalization gap, i.e. to find
R(hS) ≤ R̂S(hS) + ε. Modern results bound the generalization gap tighter with the help of the properties of the
specific hypotheses, while the earlier results are more general which did not take into account the properties of the
hypotheses. In this lecture, we will discuss the latter.

4 Generalization Bound for Finite Hypothesis Classes

Lemma 4 (Markov’s Inequality). Let Z be a non-negative random variable. Then for ∀a > 0,

P{Z ≥ a} ≤ E[Z]

a

This may not be a tight bound, but it is useful to arrive at other results. Chebyshev’s inequality is one of the most
famous corollaries of Markov’s inequality.

Lemma 5 (Chebyshev’s Inequality). Let X be an integrable random variable with finite expectation and finite non-
zero variance. Then for ∀a > 0,

P{|X − E[X]| ≥ a} ≤ V ar[X]

a2
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Lemma 6 (Generic Chernoff’s Bound). Let X be a random variable. Then for ∀t > 0 and a constant a,

P{X ≥ a} = P{etX ≥ eta} ≤ E[etX ]

eta

The generic Chernoff’s bound is a family of upper-bounds obtained by using the monotonicity of the exponential
function and Markov’s inequality. Note that though each t gives a different bound, we can minimize the bound with
respect to t to get the tightest upper-bound.

Lemma 7 (Hoeffding’s Lemma). Let X be a random variable taking values in the interval [a, b], with the expectation
value of 0. Then for ∀λ > 0,

E[eλX ] ≤ e
λ2(b−a)2

8

eλX is often regarded as the momentum generating function.

We want to show that given some arbitrary ε, δ > 0 we could choose an n such that εgen(hS) ≤ ε with probability
≥ 1 − δ. If this condition holds for H we say it is PAC Learnable. The “probably” (P) part of PAC corresponds to
1 − δ while the “approximately correct” (AC) part corresponds to ε. We show that any finite H has this property. We
first derive a probabilistic bound on the following distance that holds for any h ∈ H:∣∣∣R[h]− R̂S [h]

∣∣∣
We notice that this is just the absolute distance between the empirical average R̂S [h] and its mean since:

E[R̂S [h]] = E

[
1

n

n∑
i=1

`(h(xi), yi)

]

=
1

n

n∑
i=1

E[`(h(xi), yi)]

= R[h]

Probabilistic bounds on such distances are called concentration bounds. We will use the following such bound:

Theorem 8 (Hoeffding’s Inequality). LetZ1, · · · , Zm be independent random variables such that P{a ≤ Zi ≤ b} = 1
for i = 1, . . . ,m. Let Z̄ = 1

m

∑m
i=1 Zi. Then, for any ε > 0:

P
(∣∣ Z̄ − E[Z̄]

∣∣ > ε
)
≤ 2 exp

(
−2mε2

(b− a)2

)
Proof. (See Understanding Machine Learning [1] Appendix B.4)
First, we will try to shift Zi by its mean. DefineXi ≡ Zi−E[Z̄] = Zi−µ, i ∈ {1, . . . ,m}. Denote X̄ ≡ 1

m

∑m
i=1Xi.

With this we use the Chernoff bounds and get that for ∀λ > 0,

P{X̄ ≥ ε} = P{eλX̄ ≥ eλε} ≤ E[eλX̄ ]

eλε
= e−λε · E[eλ( 1

m

∑m
i=1Xi)] = e−λε

m∏
i=1

E[eλXi/m]

Here Xi/m is a zero mean random variable that lives in the interval [a−µm , b−µm ]. Thus we can use Hoeffding’s lemma
and get

P{X̄ ≥ ε} ≤ e−λε+
λ2(b−a)2

8m

We then minimize the RHS w.r.t. λ and get

min
λ
e−λε+

λ2(b−a)2
8m = exp

(
−2mε2

(b− a)2

)
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By the same argument we can show that P{−X̄ ≥ ε} ≤ e−λε+
λ2(b−a)2

8m , and thus we get the desired result from the
union of two disjoint probabilities:

P
(
|X̄| > ε

)
≤ 2 exp

(
−2mε2

(b− a)2

)

The expression above says that for any positive ε, our sample mean will be at least ε away from its expected value with
a probability that decays exponentially with the number of training examples we have.

We can use the Hoeffding bound to decide how many samples we would need to take to guarantee that

P (|W − E[W ] | < ε) > 1− δ

If we set δ = exp
(
−2mε2

)
we can solve to get n = O

(
− log(δ)
ε2

)
. Note: this is a lower bound on the sample size

which guarantees the statement above. This quantity is often referred to as the Sample Complexity.

Now, suppose we consider an arbitrary h ∈ H and a loss function ` with range [0, 1]. For the random variable R̂S [h]
we can use Hoeffding’s inequality to get:

P
(∣∣∣ R̂S [h]−R[h]

∣∣∣ ≥ ε) ≤ 2 exp
(
−2mε2

)
We now extend this bound for εgen(hS):

P
(∣∣∣ R̂S [hS ]−R[hS ]

∣∣∣ ≥ ε) ≤ P (max
h∈H

∣∣∣ R̂S [hS ]−R[hS ]
∣∣∣ > ε

)
= P

( ⋃
h∈H

{∣∣∣ R̂S [h]−R[h]
∣∣∣ > ε

})
(a)

≤
∑
h∈H

P
(∣∣∣ R̂S [h]−R[h]

∣∣∣ > ε
)

= 2|H| exp
(
−2mε2

)
Where (a) follows using a union bound argument. We can prove this in the case of 2 events and then use induction. In
this case P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B).

If we take

m = O

(
log( |H|δ )

ε2

)
We get the desired result:

P
(∣∣∣ R̂S [hS ]−R[hS ]

∣∣∣ ≥ ε) ≤ δ
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