

Some results on GAN dynamics

Ioannis Mitliagkas

Game dynamics are weird fascinating

Start with optimization dynamics

Optimization

$$oldsymbol{ heta}^* \in rgmin_{oldsymbol{ heta}\inoldsymbol{ heta}} \mathcal{L}^{(oldsymbol{ heta})}(oldsymbol{ heta})$$

Smooth, differentiable cost function, L → Looking for stationary (fixed) points (gradient is 0) → Gradient descent

Optimization

 $oldsymbol{v}(oldsymbol{ heta}) =
abla \mathcal{L}^{(oldsymbol{ heta})}(oldsymbol{ heta})$

Conservative vector field → Straightforward dynamics

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \boldsymbol{v}(\boldsymbol{\theta}_t)$$

____ ~~~~~ ~~~~ ~~~~ **************** *,,,,,,,,,*,,,,,,,,,,,,,,, ///////////// ///////////////

Ferenc Huszar

Gradient descent $\boldsymbol{v}(\boldsymbol{\theta}) = \nabla \mathcal{L}^{(\boldsymbol{\theta})}(\boldsymbol{\theta})$ | Fixed-p

Conservative vector field → Straightforward dynamics

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \boldsymbol{v}(\boldsymbol{\theta}_t)$$

Fixed-point analysis $F_{\eta}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta \boldsymbol{v}(\boldsymbol{\theta})$

Jacobian of operator

 $\nabla F_{\eta}(\boldsymbol{\theta}) = I - \eta \nabla \boldsymbol{v}(\theta)$

Hessian of objective, L

Local convergence

Theorem 1 (Prop. 4.4.1 Bertsekas [1999]). If the spectral radius $\rho_{\max} \stackrel{def}{=} \rho(\nabla F_{\eta}(\boldsymbol{\omega}^*)) < 1$, then, for $\boldsymbol{\omega}_0$ in a neighborhood of $\boldsymbol{\omega}^*$, the distance of $\boldsymbol{\omega}_t$ to the stationary point $\boldsymbol{\omega}^*$ converges at a linear rate of $\mathcal{O}((\rho_{\max} + \epsilon)^t)$, $\forall \epsilon > 0$.

Eigenvalues of op. Jacobian
$$\lambda(
abla F_{\eta}(m{ heta})) = 1 - \eta\lambda(
abla m{v}(heta))$$

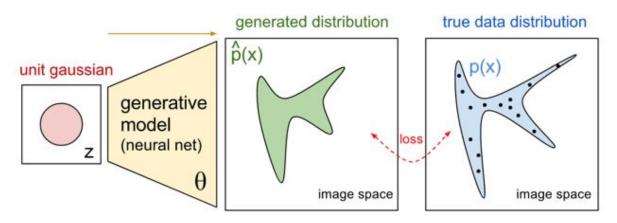
Jacobian of operator

Hessian of objective, L Symmetric, real-eigenvalues

 $\nabla F_{\eta}(\boldsymbol{\theta}) = I - \eta \nabla \boldsymbol{v}(\boldsymbol{\theta})$

Games

Implicit generative models



- Generative moment matching networks [Li et al. 2017]
- Other, domain-specific losses can be used
- Variational AutoEncoders [Kingma, Welling, 2014]
- Autoregressive models (PixelRNN [van den Oord, 2016])

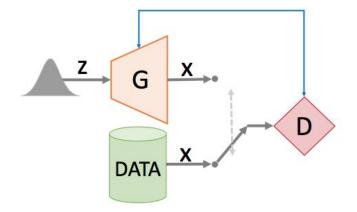
Generative Adversarial Networks

Both differentiable

Generator network, G

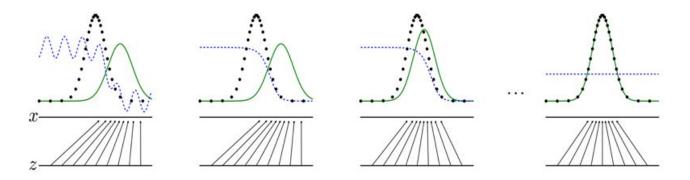
Given latent code, z, produces sample G(z) Discriminator network, D

Given sample x or G(z), estimates probability it is real



$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim \mathbb{P}_{x}}[\log D(x)] + \mathbb{E}_{z \sim \mathbb{P}_{z}}[\log(1 - D(G(z)))]$$

Generative Adversarial Networks



 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim \mathbb{P}_{x}}[\log D(x)] + \mathbb{E}_{z \sim \mathbb{P}_{z}}[\log(1 - D(G(z)))]$

Games

Nash Equilibrium

$$\boldsymbol{\theta}^* \in \operatorname*{arg\,min}_{\boldsymbol{\theta}\in\boldsymbol{\theta}} \mathcal{L}^{(\boldsymbol{\theta})}(\boldsymbol{\theta}, \boldsymbol{\varphi}^*)$$

 $\boldsymbol{\varphi}^* \in \operatorname*{arg\,min}_{\boldsymbol{\varphi}\in\boldsymbol{\varphi}} \mathcal{L}^{(\boldsymbol{\varphi})}(\boldsymbol{\theta}^*, \boldsymbol{\varphi})$

Smooth, differentiable L → Looking for local Nash eq

→ Gradient descent
 → Simultaneous
 → Alternating

Game dynamics

$$oldsymbol{v}(oldsymbol{arphi},oldsymbol{ heta})\coloneqq egin{bmatrix}
abla_{oldsymbol{arphi}}\mathcal{L}^{(oldsymbol{arphi})}(oldsymbol{arphi},oldsymbol{ heta})\
abla_{oldsymbol{ heta}}\mathcal{L}^{(oldsymbol{ heta})}(oldsymbol{arphi},oldsymbol{ heta}) \end{bmatrix}$$

Non-conservative vector field $\overrightarrow{}$ Rotational dynamics $F_{\eta}(\varphi, \theta) \stackrel{\text{def}}{=} \begin{bmatrix} \varphi & \theta \end{bmatrix}^{\top} - \eta \, \boldsymbol{v}(\varphi, \theta)$

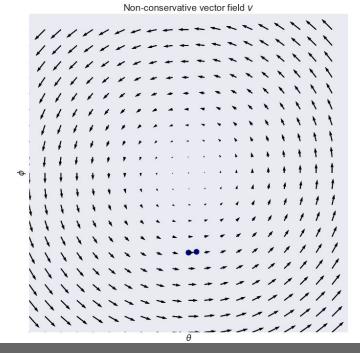
Non-conservative vector field v ************ ************* ************ *********** * * * * * * * * * * * * * * * * * ***************** *************** 1111111111111111111111 -----/////// ----//////

Game dynamics under gradient descent

$$F_{\eta}(\boldsymbol{\varphi}, \boldsymbol{\theta}) \stackrel{\text{def}}{=} \begin{bmatrix} \boldsymbol{\varphi} & \boldsymbol{\theta} \end{bmatrix}^{\top} - \eta \ \boldsymbol{v}(\boldsymbol{\varphi}, \boldsymbol{\theta})$$

Jacobian is non-symmetric, with complex eigenvalues \rightarrow Rotations in decision space

Games demonstrate rotational dynamics.



The Numerics of GANs by Mescheder, Nowozin, Geiger

A word on notation and formulation

Maximization vs minimization

$$\mathcal{L}^{(\boldsymbol{\phi})}(\boldsymbol{\phi}, \boldsymbol{\theta}) = -f(\boldsymbol{\phi}, \boldsymbol{\theta})$$

 $\mathcal{L}^{(\boldsymbol{\theta})}(\boldsymbol{\phi}, \boldsymbol{\theta}) = -g(\boldsymbol{\phi}, \boldsymbol{\theta})$

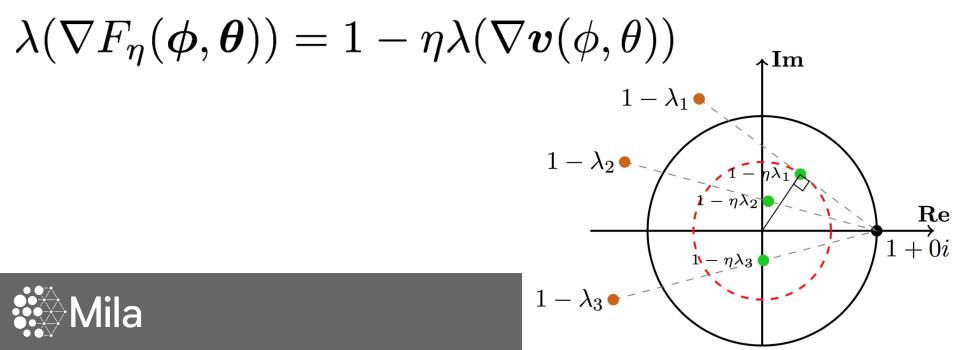
Step size

 $\eta = h$

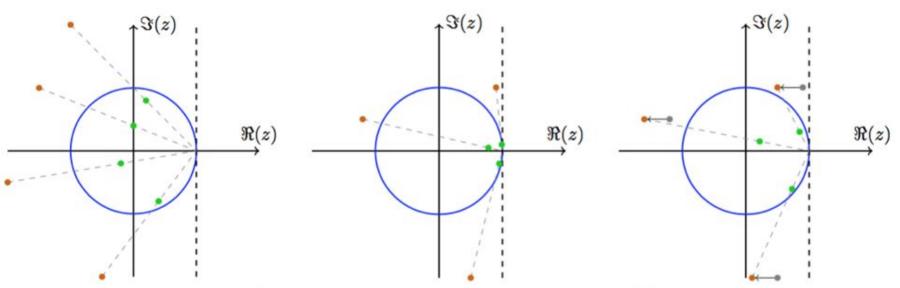
Warning: $\mathcal{L} \neq L$

Eigen-analysis, gradient descent

Theorem 1 (Prop. 4.4.1 Bertsekas [1999]). If the spectral radius $\rho_{\max} \stackrel{def}{=} \rho(\nabla F_{\eta}(\boldsymbol{\omega}^*)) < 1$, then, for $\boldsymbol{\omega}_0$ in a neighborhood of $\boldsymbol{\omega}^*$, the distance of $\boldsymbol{\omega}_t$ to the stationary point $\boldsymbol{\omega}^*$ converges at a linear rate of $\mathcal{O}((\rho_{\max} + \epsilon)^t)$, $\forall \epsilon > 0$.



The Numerics of GANs

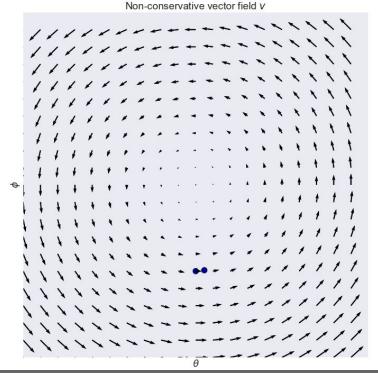


(a) Illustration how the eigenvalues are projected into unit ball.

(b) Example where h has to be chosen extremely small. (c) Illustration how our method alleviates the problem.

 $\lambda(
abla F_\eta(oldsymbol{\phi},oldsymbol{ heta})) = 1 - \eta\lambda(
abla v(\phi, heta))$ université formed de Montrées

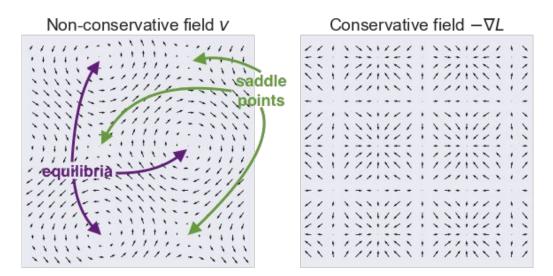
Make vector field "more conservative"



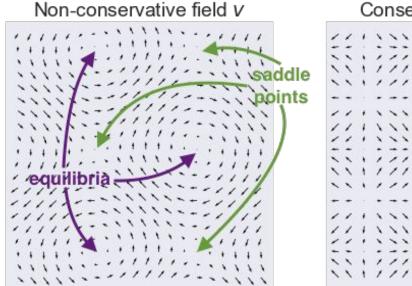
Idea 1: Minimize the norm of the gradient

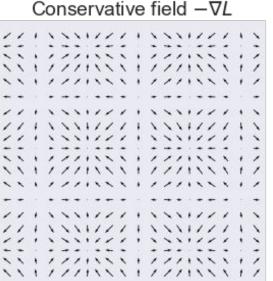
 $L(\boldsymbol{\phi}, \boldsymbol{\theta}) = \frac{1}{2} \| v(\boldsymbol{\phi}, \boldsymbol{\theta}) \|^2$

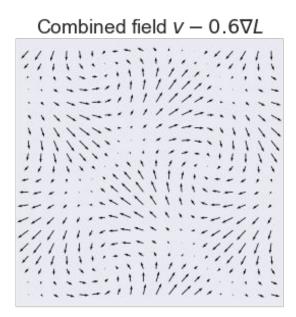
Idea 1: Minimize vector field norm $L(\boldsymbol{\phi}, \boldsymbol{\theta}) = \frac{1}{2} \| v(\boldsymbol{\phi}, \boldsymbol{\theta}) \|^2$



Idea 2: use L as regularizer







Idea 2: use L as regularizer

Algorithm 2 Consensus optimization

1: while not converged do 2: $v_{\phi} \leftarrow \nabla_{\phi}(f(\theta, \phi) - \gamma L(\theta, \phi))$ 3: $v_{\theta} \leftarrow \nabla_{\theta}(g(\theta, \phi) - \gamma L(\theta, \phi))$ 4: $\phi \leftarrow \phi + hv_{\phi}$ 5: $\theta \leftarrow \theta + hv_{\theta}$ 6: end while

Idea 2: use L as regularizer

Combined vector field $v - 0.6\nabla L$

	1	7	١	ł	ł	ţ	ŧ	ŧ	ţ	ţ	ţ	1	1	1		1	/	~	~	-
	1	Ń	Ń	Ń.	1	ŧ	ŧ	ŧ	ŧ	ŧ	¥	1	1	1	1	1	~	~	-	~
	N	N	Y	X	¥	ł.	ŧ	ŧ	ŧ	ŧ	¥	1	1	1	1	~	~	~	-	-
	1	N	1	X	¥	٩	¥	ŧ	ŧ	۲	+	1	1	1	-	~	-	-	-	-
	1	1	X	X	X	۲	۲	۲	•	۲	*	*	*	*	*	*	-	-	-	-
	1	1	1	×	×	×	٩	٠	۲	,	,	,	•	<u> </u>	*	_				
	1	>	1		×	*	۹	٩	٦	,	,	,	•		-	+	+	*	+	+
	1	~	~	*	•	•	•	٩	٩	•	•	,	•	-	-	+	+	+	+	+
	-	~	~	*	*	*	•	•	•	•			•	٠	-	-	*	+	t	+
Φ	-	*	~	*	*	*	•	•	•		÷	-	•	۲	•	*	*	*	-	*
	-	+	-	+	*	٠	-	٠	•			÷	•	•	•	*		*	*	~
	+	+	+	+	+	٠	*	٠	-	•	•	٠	•	×	*	*	*	*	~	~
	-	-	→	+	+	+	-	•	*	•	4			•		×	•		1	1
	-	-	+	+	-	-	-	*	*		4	4	٠	•	۲	×	X	N	1	1
				-+-	-	-			1	1		•	4	ł	ł	١	۸	۲	1	1
	-	-	-	-	~		1		1	1	1	+	ŧ	ŧ	t	۲	۲	١	1	1
	_		-	/	,	1	1	1	1	1	+	ŧ	t	t	t	t	1	1	1	1
	_		~	/	1	1	1	1	1	1	1	1	t	t	t	t	1	١	1	1
	~	~	/	1	1	1	1	1	1	1	1	1	t	t	t	1	1	1	1	1
						1							t	1	t	t	1	1	1	1
											θ									

Other ways to control these rotations?

Momentum (heavy ball, Polyak 1964) $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \boldsymbol{v}(\boldsymbol{\theta}_t) + \beta(\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1})$

Jacobian of momentum operator

$$\nabla F_{\eta,\beta}(\boldsymbol{\theta}_t,\boldsymbol{\theta}_{t-1}) = \begin{bmatrix} \boldsymbol{I}_n & \boldsymbol{0}_n \\ \boldsymbol{I}_n & \boldsymbol{0}_n \end{bmatrix} - \eta \begin{bmatrix} \nabla \boldsymbol{v}(\boldsymbol{\theta}_t) & \boldsymbol{0}_n \\ \boldsymbol{0}_n & \boldsymbol{0}_n \end{bmatrix} + \beta \begin{bmatrix} \boldsymbol{I}_n & -\boldsymbol{I}_n \\ \boldsymbol{0}_n & \boldsymbol{0}_n \end{bmatrix}$$

Non-symmetric, with complex eigenvalues \rightarrow Rotations in augmented state-space

Summary

Positive momentum can be bad for adversarial games

Practice that was very common when GANs were first invented.

→ Recent work reduced the momentum parameter.
 → Not an accident

Negative Momentum for Improved Game Dynamics

Gidel, Askari Hemmat, Pezeshki, Huang, Lepriol, Lacoste-Julien, Mitliagkas AISTATS 2019

Our results

Negative momentum is optimal on simple bilinear game

Negative momentum values are locally preferrable near 0 on a more general class of games

Negative momentum is empirically best for certain zero sum games like "saturating GANs"

Momentum on games

Recall Polyak's momentum (on top of simultaneous grad. desc.):

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \eta \boldsymbol{v}(\boldsymbol{x}_t) + \beta(\boldsymbol{x}_t - \boldsymbol{x}_{t-1}), \quad \boldsymbol{x}_t = (\boldsymbol{\theta}_t, \boldsymbol{\phi}_t)$$

Fixed point operator requires a **state augmentation**: (because we need previous iterate)

$$F_{\eta,\beta}(\boldsymbol{x}_t, \boldsymbol{x}_{t-1}) := \begin{bmatrix} \boldsymbol{I}_n & \boldsymbol{0}_n \\ \boldsymbol{I}_n & \boldsymbol{0}_n \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_t \\ \boldsymbol{x}_{t-1} \end{bmatrix} - \eta \begin{bmatrix} \boldsymbol{v}(\boldsymbol{x}_t) \\ \boldsymbol{0}_n \end{bmatrix} + \beta \begin{bmatrix} \boldsymbol{I}_n & -\boldsymbol{I}_n \\ \boldsymbol{0}_n & \boldsymbol{0}_n \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_t \\ \boldsymbol{x}_{t-1} \end{bmatrix}$$

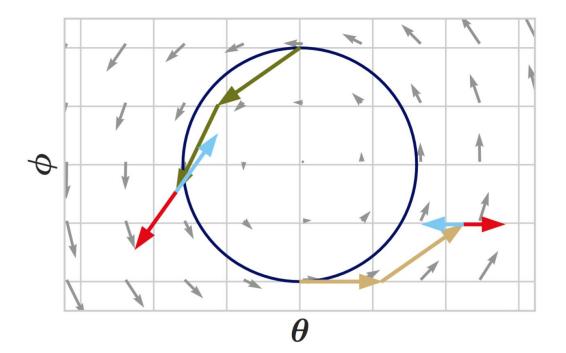
Bilinear game $\min_{\theta} \max_{\varphi} \theta^{\top} A \varphi$

Method	eta	Bounded	Converges			
Simultaneous	$\beta \in \mathbb{R}$	×	×			
	>0	×	×			
Alternated	0	\checkmark	×			
	<0	\checkmark	\checkmark			

"Proof by picture"

Gradient descent → Simultaneous → Alternating

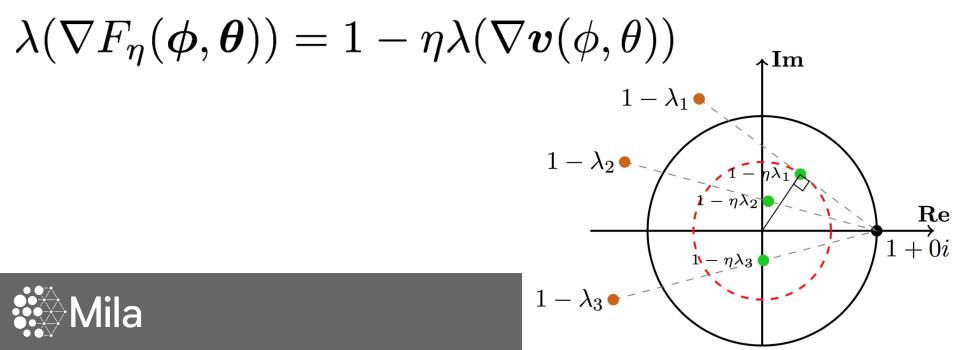
Momentum → Positive → Negative



General games

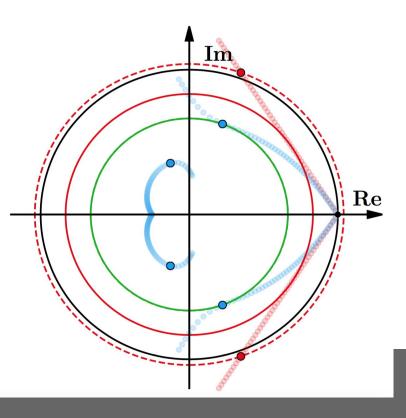
Eigen-analysis, 0 momentum

Theorem 1 (Prop. 4.4.1 Bertsekas [1999]). If the spectral radius $\rho_{\max} \stackrel{def}{=} \rho(\nabla F_{\eta}(\boldsymbol{\omega}^*)) < 1$, then, for $\boldsymbol{\omega}_0$ in a neighborhood of $\boldsymbol{\omega}^*$, the distance of $\boldsymbol{\omega}_t$ to the stationary point $\boldsymbol{\omega}^*$ converges at a linear rate of $\mathcal{O}((\rho_{\max} + \epsilon)^t)$, $\forall \epsilon > 0$.



Zero vs negative momentum

Momentum → Zero → Negative



Negative Momentum

Theorem 3. The eigenvalues of $\nabla F_{\eta,\beta}(\phi^*, \theta^*)$ are

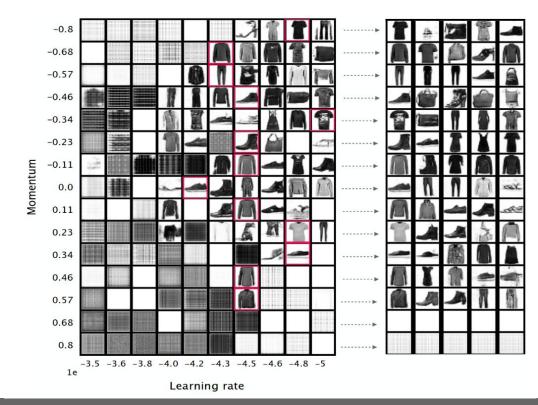
$$\mu_{\pm}(\beta,\eta,\lambda) := (1 - \eta\lambda + \beta) \frac{1 \pm \Delta^{\frac{1}{2}}}{2},\tag{9}$$

where $\Delta := 1 - \frac{4\beta}{(1-\eta\lambda+\beta)^2}$, $\lambda \in Sp(\nabla v(\phi^*, \theta^*))$ and $\Delta^{\frac{1}{2}}$ is the complex square root of Δ with positive real part³. Moreover we have the following Taylor approximation,

$$\mu_{+}(\beta,\eta,\lambda) = 1 - \eta\lambda - \beta \frac{\eta\lambda}{1-\eta\lambda} + O(\beta^{2}) \quad and \quad \mu_{-}(\beta,\eta,\lambda) = \frac{\beta}{1-\eta\lambda} + O(\beta^{2})$$
(10)
³ If Δ is a negative real number we set $\Delta^{\frac{1}{2}} := i\sqrt{-\Delta}$

Empirical results

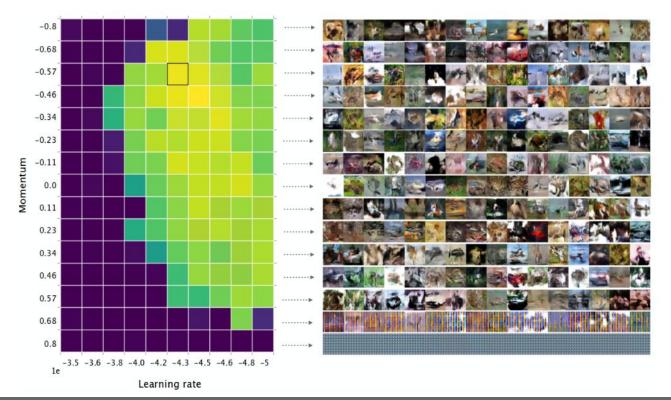
What happens in practice?



Fashion MNIST:

What happens in practice?

CIFAR-10:



Negative Momentum

To sum up:

• Negative momentum seems to improve the behaviour due to

"bad" eigenvalues.

- Optimal for a class of games
- Empirically optimal on "saturating" GANs

