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What’s the Idea of the Paper?
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TL;DR

Deep nets, but not shallow nets, can 
efficiently approximate functions of 
functions 
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Functions of Functions

Functions of functions, or compositional functions, are a frequently occuring special 
class of functions we often care about in ML (e.g. natural language, object 
recognition, hierarchical RL, etc.)
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Deep Nets Efficiently Model this Hierarchy 

Deep nets are able to much more efficiently approximate compositional 
functions using fewer units N than shallow networks can

Few N Many N
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General Outline
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General Outline

1. Theory:  When Deep is “Better” than Shallow

2. Theorem 2 Proof

3. Example + Further Commentary
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Theory:  When Deep is “Better” 
than Shallow
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When Deep is “Better” than Shallow?

● Both shallow and deep networks are universal*
● However, for hierarchical compositions of local functions, deep 

nets achieve the same accuracy with exponentially fewer 
parameters!  

○ In other words, deep nets avoid the “curse of dimensionality”.  Termed by Bellman in 1961.

universal* = approximate arbitrarily well any continuous function of n variables on compact domain



MILA

Theorem 2 Preliminaries (1/2)

In the theorem, we consider a 
hierarchical binary tree 
function f with n variables
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Theorem 2 Preliminaries (2/2)

In the theorem, we consider a 
hierarchical binary tree 
function f with n variables



MILA

Deep Nets Require Exponentially Fewer Variables

For this function, the number of units N needed to achieve accuracy ϵ is given by

Shallow networks (Theorem 1):

Deep networks (Theorem 2):
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Theorem 2 Proof 
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Theorem 2 Proof Outline

● Constituent functions ∈ , can be approximated by shallow nets

●          is a compact set in Sobolev space ⇒     is Lipschitz ⇒         is Lipschitz

From Theorem 1

m ≥ 1
using ∞-norm

⇒
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Theorem 2 Proof Outline
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Theorem 2 Proof Outline
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Theorem 2 Proof Outline

Expanding recursively for the binary tree of n inputs ⇨ depth log
2
n 

Remember for shallow:
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Theorem 2 Proof Outline

Expanding recursively for the binary tree of n inputs ⇨ depth log
2
n 

Deep number of neurons/units:
 



MILA

Theorem 2 Proof Outline

Expanding recursively for the binary tree of n inputs

Conveniently our 
assumptions imply that:
L  ≤  1 (compact Sobolev)
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Examples and Commentary
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Building Intuition with an example 

Consider function Q, a polynomial with coordinatewise degree of 211  

A deep network may approximate the polynomial with 39 units.
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Building Intuition with an example 
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Building Intuition with an example 
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Building Intuition with an example 

We can construct an approximation to any polynomial 

using a fixed number of weights and biases. This number

grows exponentially faster when the network is shallow

than when the network is deep.
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Function composition is common in mathematics
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Why are Compositional Functions so common?

● Physics
○ The physical world contains many patterns of self-similar structures
○ Sequence of increasing scales that are local at each scale
○ Iterated local functions can be Turing universal

● Neuroscience
○ The way we interpret the world is naturally hierarchical
○ The questions we pose are naturally hierarchical
○ Our neurobiology is a one evolutionary success story
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Conclusions
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TL;DR

Deep nets efficiently approximate 
compositional functions through a 
hierarchy of local computations
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Appendix
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Function composition is common in mathematics

● Composition is a common trick when approximating functions
● Deep neural networks are a series nested function compositions
● Poggio et al. are primarily interested in multiplicative composition
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TL;DR

● Both shallow and deep neural networks can approximate any 
polynomial, but deep networks can approximate much more 
efficiently given a fixed number of units.

● The approximating deep network does not need to exactly match 
the architecture of the compositional function as long as the 
graph or tree associated with the function is contained in the 
graph associated with the network.
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[Old] Outline

1. Review function approximation
○ Shallow nets
○ Deep nets
○ Different activations

2. Curse of dimensionality
3. Compositional functions

○ What is it?
○ Why is compositionality so common?
○ Hierarchically local compositional functions

4. An illustrative example
5. Conclusion

○ Revisit highlight of points

Deep networks avoid the curse of dimensionality for compositional functions
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Building Intuition with an example 

H. N. Mhaskar, “Neural networks for optimal approximation of smooth and analytic 
functions,” Neural Computation, vol. 8, no. 1, pp. 164–177, 1996.
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Generalizations

● TODO(christos):  Discuss the results of Theorem 3 (general degree of fan-in dv to 
node v), offered without proof.

● TODO(christos):  Discuss Theorem 4 (ReLU), offered without proof.
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Theorem 2 Preliminaries (1/2)

In the theorem, we consider a 
hierarchical binary tree 
function f with n variables
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Theorem 2 Preliminaries (2/2)
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Curse of Dimensionality

-”Curse of dimensionality” coined by Bellman in 1961

-Many algorithms do not work well in high dimensions

-In high-D, most of the mass of a multivariate Gaussian distribution is not near 
the mean, but in a “shell” of increasing distance from the mean

-Naive measures of function approximation tend to break down in high 
dimensions

-”Blessing of non-uniformity”: most real-world applications can be modeled with a 
low dimensional manifold
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Observations

1. Although compositional functions are just a subset of functions of n variables, 
these look the same to a shallow network 

2. The deep network only needs to contain the acyclic graph representing the 
function as a computation subgraph, it doesn’t need to match it exactly
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Prior Version of 
Proof
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Theorem 2 Proof Outline (2/2)

● Bounded node-level error and Lipschitz property:

● Expanding recursively for the binary tree of n inputs:

⬜
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Theorem 2 Proof Outline (2/2)

● Bounded node-level error and Lipschitz property:

● Expanding recursively for the binary tree of n inputs:

⬜

ϵ + Lϵ + L2ϵ

ϵ + Lϵ
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Theorem 2 Proof Outline (2/2)

● Bounded node-level error and Lipschitz property:

● Expanding recursively for the binary tree of n inputs:

⬜

Remember for shallow:
 

Deep number of neurons/units:
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Theorem 2 Proof Outline (2/2)

● Bounded node-level error and Lipschitz property:

● Expanding recursively for the binary tree of n inputs:

⬜

Conveniently our assumptions 
imply that:
L  ≤  1 (compact Sobolev)
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Deep Learning Theory

● Functions approximation: what classes of functions can be approximated? 
● Optimization techniques (ie. n-th order, SGD, gradient free methods)
● Generalization
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Appendix:  Abandoning Weight 
Sharing
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Benefit (mostly) from Hierarchy not Weight Sharing

The authors show that deep conv nets 
that do not share parameters are still 
able to achieve low validation losses 
on CIFAR-10.  They premise that the 
biggest advantage comes from 
hierarchy, not from weight sharing of 
kernels.

Of course, in practice, memory 
considerations still make weight 
sharing a nice idea.


