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What's the Idea of the Paper?
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TL,DR

Deep nets, but not shallow nets, can
efficiently approximate functions of
functions
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Functions of Functions

Functions of functions, or compositional functions, are a frequently occuring special
class of functions we often care about in ML (e.g. natural language, object
recognition, hierarchical RL, etc.)

f(xl, e mS) f(@1, -+, @) = ha(h21(h11(21,T2), h12(z3, %4)), ho2 (R13 (@5, 6 ), h1a(27, Ts)))
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Deep Nets Efficiently Model this Hierarchy

Deep nets are able to much more efficiently approximate compositional
functions using fewer units N than shallow networks can
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General Outline

MILA



General Outline

1. Theory: When Deep is “Better” than Shallow
2. Theorem 2 Proof

3. Example + Further Commentary
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Theory: When Deep is “Better”
than Shallow
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When Deep is “Better” than Shallow?

e Both shallow and deep networks are universal*

e However, for hierarchical compositions of local functions, deep
nets achieve the same accuracy with exponentially fewer
parameters!

o In other words, deep nets avoid the “curse of dimensionality”. Termed by Bellman in 1961.

universal* = approximate arbitrarily well any continuous function of n variables on compact domain
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Theorem 2 Preliminaries (1/2)

In the theorem, we consider a
hierarchical binary tree

function fwith n variables Parameters

/'\ e N : number of units in neural net

e ¢ : required accuracy

e n : number of variables for the function f

X, Xy, X, X, X X, X, X, e m > 1: integer smoothness parameter
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Theorem 2 Preliminaries (2/2)

In the theorem, we consider a
hierarchical binary tree
function fwith n variables

N

X, Xy X3 X, Xs Xg X, Xg

Additional Assumption

W is the set of functions of n variables with continuous partial derivatives of
orders up to m < oo such that

Ifl+ ) DMl <, (1)
1<[k[1<m

where DF denotes the partial derivative indicated by the multi integer k > 1,
and |k|; is the sum of the components of k.
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Deep Nets Require Exponentially Fewer Variables

For this function, the number of units N needed to achieve accuracy € is given by

Shallow networks (Theorem 1):

N = O(¢~™'™) and is the best possible

Deep networks (Theorem 2):

N =0O((n—1)e ™)
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Theorem 2 Proof
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Theorem 2 Proof Outline

e Constituent functions € W,,% , can be approximated by shallow nets

g NZO(E—n/m) — g =cN ™2

From Theorem 1

e TV isacompact setin Sobolev spaci=>W7§lz is Lipschitz = Wg}f is Lipschitz
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Theorem 2 Proof Outline

P
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X, X, X3 X, x5 X, x7 X, Xy Xy Xy Xy X5 Xg X7 Xg

|P(Py, P2)—h(hy, he)|| < ||P(P1, P2) —h(Py, Po)||+||h(Pr1, P2) —h(h1, ha)||

_________ /_ S N

| Use Lipschitz property |
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Theorem 2 Proof Outline

HPcur.node(Pla PZ) — hcur.node(hla hZ)H < €shallow T+ Leprev.node

' e+ Le + L%

MILA



Theorem 2 Proof Outline

Expanding recursively for the binary tree of ninputs = depth log,n

€total — (]- + L + L2‘|‘ . _|_Llog2n)€

1 L1+log2n —m/9
€total — 11, (CN / )
Remember for shallow:
e =cN ™2
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Theorem 2 Proof Outline

Expanding recursively for the binary tree of ninputs = depth log,n

1_L1—|—l092n (N7 /9
€total — T 11 ( LV / )

Deep number of neurons/units:

Ntotal — (n — ]-)N

1_L1+l092’n
€total — C 11,

(Sl )=/
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Theorem 2 Proof Outline

Expanding recursively for the binary tree of n inputs

1_L1—|—logzn
€total — C 11,
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Niotar = (n 1)6t0tc{l (c(l—lL]'l"Hzn)) /M = (n—1)e it O (n? (k)|
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Conveniently our
assumptions imply that:

L = 1 (compact Sobolev)
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Examples and Commentary
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Building Intuition with an example

Consider function Q, a polynomial with coordinatewise degree of 2"

Q(z,y) = (Az’y® + Bz’y
+Czy® + Dz* + 2Ezy
+Fy? +2Gz + 2Hy + I)

210

A deep network may approximate the polynomial with 39 units.
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Building Intuition with an example

Q(z,y) = (A2 + B’y + Cyle + Da® + 2By + Fy? + 2Gx + 2Hy + I)*"
= (Az*y? + Bz’y + Cy?z + Dz* + 2Ezy + Fy* + 2Gx + 2Hy + I)'0%
— A1024,,2048,2048 | 4 y1024

R F Y LYY Y
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Building Intuition with an example

Q(z,y) = (Az*y? + Ba’y + Cy’z + Dz’ + 2Ezy + Fy? + 2Gz + 2Hy + I)*

= (Az?y* + Bz’y + Cy*z + Da* + 2Ezy + Fy?* + 2Gx + 2Hy + I)'*
— A1024,,2048 y2048 N T

or...
Z(z,y) = Az*y* + Bz’y + Cy’x + D2? + 2Exy + Fy*> + 2Gx + 2Hy + I

Q(z,y) = (((((((((Z*)*)*)*)*)*)*)*)*)?

MILA



Building Intuition with an example

Q(z,y) = (Az’y’ + Bz’y
+Czy® + Dz + 2Ezy
+Fy® 4+ 2Gz + 2Hy + I)
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Building Intuition with an example

We can construct an approximation to any polynomial
using a fixed number of weights and biases. This number
grows exponentially faster when the network is shallow

than when the network is deep.
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Function composition is common in mathematics
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Why are Compositional Functions so common?

e Physics
o The physical world contains many patterns of self-similar structures
o Sequence of increasing scales that are local at each scale
o Iterated local functions can be Turing universal
e Neuroscience
o The way we interpret the world is naturally hierarchical
o The questions we pose are naturally hierarchical
o Our neurobiology is a one evolutionary success story
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Conclusions
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TL,DR

Deep nets efficiently approximate
compositional functions through a
hierarchy of local computations
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Appendix
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Function composition is common in mathematics

e Composition is a common trick when approximating functions
e Deep neural networks are a series nested function compositions
e Poggio et al. are primarily interested in multiplicative composition
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The power of deeper networks for expressing natural functions

David Rolnick*, Max Tegmark'
Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 and
Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(Dated: May 17, 2017)

It is well-known that neural networks are universal approximators, but that deeper networks tend
to be much more efficient than shallow ones. We shed light on this by proving that the total number
of neurons m required to approximate natural classes of multivariate polynomials of n variables
grows only linearly with n for deep neural networks, but grows exponentially when merely a single
hidden layer is allowed. We also provide evidence that when the number of hidden layers is increased
from 1 to k, the neuron requirement grows exponentially not with n but with n

1k suggesting that

the minimum number of layers required for computational tractability grows only logarithmically

with n.

I. INTRODUCTION

Deep learning has lately been shown to be a very powerful
tool for a wide range of problems, from image segmen-
tation to machine translation. Despite its success, many
of the techniques developed by practitioners of artificial
neural networks (ANNs) are heuristics without theoreti-
cal guarantees. Perhaps most notably, the power of feed-

network of types other than the standard feedforward
model. The problem has also been posed for sum-product
networks [11] and restricted Boltzmann machines [12].
Cohen, Sharir, and Shashua [13] showed, using tools from
tensor decomposition, that shallow arithmetic circuits
can express only a measure-zero set of the functions ex-
pressible by deep circuits. A weak generalization of this
result to convolutional neural networks was shown in [14].



TL;

MILA

DR

Both shallow and deep neural networks can approximate any
polynomial, but deep networks can approximate much more
efficiently given a fixed number of units.

The approximating deep network does not need to exactly match
the architecture of the compositional function as long as the
graph or tree associated with the function is contained in the
graph associated with the network.



[0ld] Outline

Deep networks avoid the curse of dimensionality for compositional functions

1. Review function approximation
o Shallow nets
o Deep nets
o Different activations

2. Curse of dimensionality

3. Compositional functions
o Whatis it?
o  Why is compositionality so common?
o Hierarchically local compositional functions

4. An illustrative example

5. Conclusion
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Building Intuition with an example

H. N. Mhaskar, “Neural networks for optimal approximation of smooth and analytic
functions,” Neural Computation, vol. 8, no. 1, pp. 164-177, 1996.

LEMMA 3.2. Let ¢ satisfy the conditions of Theorem 2.1, m > 1 be an integer and k > 0 be any multi-integer
in Z° with maxi<;<s |kj| < m. Then for every € > 0, there exists Gk,m.c € Ilg;(6m+1)e,s such that

(3.16) | Tk — Gx;m,elloo < €.

The weights and thresholds of each Gy m. may be chosen from a fized set with cardinality not ezceeding
(6m + 1)°.
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Generalizations

e TODO(christos): Discuss the results of Theorem 3 (general degree of fan-in d to
node v), offered without proof.
e TODO(christos): Discuss Theorem 4 (ReLU), offered without proof.
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Theorem 2 Preliminaries (1/2)

In the theorem, we consider a
hierarchical binary tree
function fwith n variables

MILA

f($1, vt ,338) = hg (h21(h11($1, $2)7 h12($3, $4)), hzz(h13($5, -T6), h14($77 xs)))

N

X, Xy X3 X, Xg Xg X, Xg

Let I™ = [-1,1]", X = C(I™) be the space of all continuous
functions on I", with || f|| = maxgzer» |f(x)|. Let Sy, denote
the class of all shallow networks with /N units of the form

N
T Zaka(<wk,x> + b),
k=1



Theorem 2 Preliminaries (2/2)

Parameters

e N : number of units in neural net
e ¢ : required accuracy
e n : number of variables for the function f

e m > 1 : integer smoothness parameter

W is the set of functions of n variables with continuous partial derivatives
of orders up to m < oo such that

I+ > IID*fl <1, (1)

1<[k|<m

where DF denotes the partial derivative indicated by the multi integer

k > 1, and |k|; is the sum of the components of k.
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Curse of Dimensionality

-"Curse of dimensionality” coined by Bellman in 1961
-Many algorithms do not work well in high dimensions

-In high-D, most of the mass of a multivariate Gaussian distribution is not near
the mean, but in a “shell” of increasing distance from the mean

-Naive measures of function approximation tend to break down in high
dimensions

-"Blessing of non-uniformity”: most real-world applications can be modeled with a
low dimensional manifold
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Observations

1. Although compositional functions are just a subset of functions of n variables,
these look the same to a shallow network

Wi 2 Wi

2. The deep network only needs to contain the acyclic graph representing the
function as a computation subgraph, it doesn’t need to match it exactly
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Prior Version of
Proof
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Theorem 2 Proof Outline (2/2)

e Bounded node-level error and Lipschitz property:
|P(P1, P2) — h(hi,h2)|| < €this + Leépres

e Expanding recursively for the binary tree of n inputs:
€total = (1 + L + L*+... +L"%2")e

_ 1_L10g2 " Ntotal —m/2

—2/m 1-L —92/m —2/m o m
Niotal = (n = l)etotél e(1- Ltog'z")) m = (n - l)etotc{l O(n?(tenl)/m) ]

MILA



-—— e o = -

—— - ——

2 1-L m
Ntotal = (n - l)etotézn C(l—LlOg2n)) 2/ (n - 1)6

-

_2/m@(n2x(log2L)/m)

total
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Theorem 2 Proof Outline (2/2)
Remember for shallow:
ot _ —m/2
e Bounded node-level error and Lipschitz property: .-’ e =cN /
||P(P1aP2) — h(h17 h2)|| S €this T Lej;rev
e Expanding recursively for the binary‘tr‘e’é of n inputs:
€total — (1 + L + Lz‘l‘ .o +.Llog2n)€
B 1 Jlog2 n —{}-V__t_;;_[ . ;nj/—z\: Deep number of neurons/units:
etotal —_ 1 L .(__Z’L::]-___b _____ 'I ............... Ntotal _ (n . 1)N
—2 1-L —2
Ntotal ( 1) totézn Llog2n)) 2/m (n - 1)€t0té;n®(n2x(loggll)/m) D
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Theorem 2 Proof Outline (2/2)

e Bounded node-level error and Lipschitz property:

HP(P17P2) _h(h17h2)ll Sethis +L€prev . .
Convenlently our assumptions
. . . . imply that:

e Expanding recursively for the binary tree of n inputs: L s 1 (compact Sobolev)

€total — (1 + L + L2‘|' .. _|_Llog2n)€

L 1_L10g2 n Ntotal —m/2
€total = C—1_7 ( n—1 ) /

S s o iy Y Tt syt
Ntotal — (n o 1)€totél Il C(I_Llogzn)) 2/ }: (n o l)etotc{l |®(n2><(l 9L/ )J |:|

N — — — — — — —
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If the kernel is local, i.e.

lim  K(x,xj) — ¢
||x—xi||—00

then when x gets farther from the training set
f(X) — b+ ZO&,‘C,'
i

After becoming approx. linear, the predictor becomes either
constant or (approximately) the nearest neighbor predictor (e.g.
with the Gaussian kernel)

In high dimensions, a random test point tends to be equally far
from most training examples.



Deep Learning Theory

e Functions approximation: what classes of functions can be approximated?
e Optimization techniques (ie. n-th order, SGD, gradient free methods)

e Generalization

y = exp(x)

Prediction Error
: for New Data

Model Prediction Error

Training Error

>

o 6 6

Model Complexity



Appendix: Abandoning Weight
Sharing

MILA



Benefit (mostly) from Hierarchy not Weight Sharing

0.7

#— ShallowFC, 2 Layers, #Params 1577984
- DeepFC, 5 Layers, #Params 2364416

The authors show that deep conv nets oss {1 - Daapon. S, Farame 65480
that do not share parameters are still |
able to achieve low validation losses
on CIFAR-10. They premise that the
biggest advantage comes from
hierarchy, not from weight sharing of
kernels.

Of course, in practice, memory
considerations still make weight
sharing a nice idea.

Validation error on CIFAR-10

0.2 1 1 I I I |
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