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Introduction



Main Question

Main Question

What distinguishes Neural Networks that generalize well from those that

don’t?

• Capacity ?

• Regularization ?

• How we train the model?
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Traditional View

Figure 1: Traditional view of generalization. Image taken from [1]
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Motivation

Why do we care about the problem?

• Make neural networks more interpretable

• May lead to more principled and reliable model architecture design
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Background



Previous Approaches

We can bound the Generalization Error using measures of complexity

such as:

• VC Dimension

• Rademacher Complexity

• Uniform Stability

Additionally, regularization can help (including Early Stopping)
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Related Work

In 2016 Hardt et al. gives an Upper bound on Generalization error on

model using SGD using uniform stability [2]

BUT

Uniform stability is a property of a learning algorithm and is not a↵ected

by the labelling of the training data.
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Limitations

Main Message

Classic results (e.g. PAC bounds) are insu�cient in that they cannot

distinguish between neural networks with dramatically di↵erent

generalization performance.

This is demonstrated in the paper [3]. The central finding:

Deep neural networks easily fit random labels
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Results



Experiment

Setup: trained several standard architectures on the data with various

modifications:

1. True labels ! No modifications

2. Random labels ! randomly changed some labels

3. shu✏ed pixels ! apply some fixed permutation of pixels to all

images

4. Random pixels ! apply some random permutation of pixels to all

images

5. Gaussian ! Generate pixels for all images from a Gaussian
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Main Results

Figure 2: Fitting random labels and random pixels on CIFAR10.
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Results

In most cases, the training error went to zero while test error was high

Notice:

the model capacity, hyperparameters, and the optimizer remained the

same!
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Results

Explicit regularization may improve generalization performance, but is

neither necessary nor by itself su�cient for controlling generalization error
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Technical dive



Finite-sample expressivity

The empirical observations are complemented with a theoretical

construction showing that generically large neural networks can express

any labelling of the training data.

Definition

Finite-sample expressivity : is the expressive power of neural networks on

a finite sample of size n.

NB : It is possible to transfer population level results to finite sample results

using uniform convergence theorems.
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Finite-sample expressivity

Theorem

There exists1 a two-layer neural network with ReLU activations and

2n+ d weights that can represent any function on a sample of size n in d

dimensions.

1NOT all networks satisfy this
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Proof

Lemma 1

For any two interleaving sequences of n real numbers

b1 < x1 < b2 < x2 · · · < bn < xn , the n ⇥ n matrix

A = [max{xi � bj , 0}]ij has full rank. Its smallest eigenvalue is

mini{xi � bi}
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Proof

For weight vectors w , b 2 R

n and a 2 R

d , consider the function

c : Rn ! R ,

c(x) =
X

j=1

wj max{aT x � bj , 0}
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Proof

For weight vectors w , b 2 R

n and a 2 R

d , consider the function

c : Rn ! R ,

c(x) =
X

j=1

wj max{aT x � bj , 0}

• This can be done trivially with a depth 2 neural network with relu.
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Proof

For weight vectors w , b 2 R

n and a 2 R

d , consider the function

c : Rn ! R ,

c(x) =
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j=1

wj max{aT x � bj , 0}

• Now, fixing a sample S = z1, . . . , zn of size n and a target vector

y 2 Rn. We need to find weights a, b,w so that yi = c(zi ) for all

i 2 {1, . . . , n}
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Proof

For weight vectors w , b 2 R

n and a 2 R

d , consider the function

c : Rn ! R ,

c(x) =
X

j=1

wj max{aT x � bj , 0}

• First, choose a and b such that with ⇠i = a

T
zi we have the

interleaving property b1 < x1 < b2 < · · · < bn < xn Next, consider

the set of n equations in the n unknowns w ,

yi = c(zi ), i 2 {1, . . . , n}

We have c(zi ) = Aw , where A = [max{⇠i � bi , 0}]ij is the matrix of

Lemma 1.
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Proof

For weight vectors w , b 2 R

n and a 2 R

d , consider the function

c : Rn ! R ,

c(x) =
X

j=1

wj max{aT x � bj , 0}

• Now, fixing a sample S = z1, . . . , zn of size n and a target vector

y 2 Rn. We need to find weights a, b,w so that yi = c(zi ) for all

i 2 {1, . . . , n}
• We chose a and b so that the lemma applies and hence A has full

rank. We can now solve the linear system y = Aw to find suitable

weights w.
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Discussion



What We Were Talking About...

To recap:

1. We just showed that generically large neural networks can express

any labelling of the training data

2. And so it is not surprising to see the networks learn the training data

perfectly

3. but it is surprising that we can’t explain this well!
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Some Thoughts...

1. Our favourite papers are the ones that shed light on truths that are

taken for granted.

2. Its obvious that randomizing the labels would eliminate

generalizability, but finding precise mathematical statements about

this is not!

3. Models used in practice have the capability of memorizing the

training data. Is it somehow easier not to?

4. The interplay between generalization and ease of optimization seems

like an interesting thing to explore...
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Any Questions?
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