
Opening the black box of Deep
Neural Networks via Information

(Ravid Shwartz-Ziv and Naftali Tishby)

An overview by
Philip Amortila and Nicolas Gagné

1

2

"bull"

? ??

Problem:
The usual "black box" story:

"Despite their great success, there is still
no comprehensive understanding of the

internal organization of Deep Neural
Networks."

Solution:
Opening the blackbox using

mutual information!

3

"bull"

? ??

Mutual information

Solution:
Opening the blackbox using

mutual information!

4

"bull"

? ??
4

Mutual information

Solution:
Opening the blackbox using

mutual information!

5

"bull"

? ??
5

Mutu
al

inf
or

mati
on

6

"bull"

6

Mutual information

Solution:
Opening the blackbox using

mutual information!

77

Spoiler alert!
As we train a deep neural network, its layers will

1. Gain "information" about the true
label and the input.

2. Then, will gain "information" about
the true label but will loose
"information" about the input!

88

Spoiler alert!
As we train a deep neural network, its layers will

1. Gain "information" about the true
label and the input.

2. Then, will gain "information" about
the true label but will lose
"information" about the input!

99

Spoiler alert!
As we train a deep neural network, its layers will

During that second stage, it forgets the details of the
input that are irrelevant to the task.

1. Gain "information" about the true
label and the input.

2. Then, will gain "information" about
the true label but will lose
"information" about the input!

1010

Spoiler alert!
As we train a deep neural network, its layers will

During that second stage, it forgets the details of the
input that are irrelevant to the task.

1. Gain "information" about the true
label and the input.

2. Then, will gain "information" about
the true label but will lose
"information" about the input!

1111

Spoiler alert!
As we train a deep neural network, its layers will

(Not unlike Picasso's deconstruction of the bull.)

Spoiler alert!

1212

Before delving in, we first need to define what we mean by
"information".

Spoiler alert!

1313

Before delving in, we first need to define what we mean by
"information".

By information, we mean mutual information.

What is mutual information?
For discrete random variables X and Y :

H(X) := �
nX

i=1

p(xi) log (p(xi))
• Entropy of X

given nothing

What is mutual information?
For discrete random variables X and Y :

H(X|y) := �
nX

i=1

p(xi|y) log (p(xi|y))

H(X) := �
nX

i=1

p(xi) log (p(xi))

• Entropy of X
given y

• Entropy of X
given nothing

What is mutual information?

16

For discrete random variables X and Y :

H(X|y) := �
nX

i=1

p(xi|y) log (p(xi|y))

H(X) := �
nX

i=1

p(xi) log (p(xi))

H(X|Y) :=
mX

j=1

p(yj)H(X|yj)

• Entropy of X
given y

• Entropy of X
given Y

• Entropy of X
given nothing

What is mutual information?

17

For discrete random variables X and Y :

H(X|y) := �
nX

i=1

p(xi|y) log (p(xi|y))

H(X) := �
nX

i=1

p(xi) log (p(xi))

H(X|Y) :=
mX

j=1

p(yj)H(X|yj)

I(X;Y) := H(X)�H(X|Y)

• Entropy of X
given y

• Entropy of X
given Y

• Entropy of X
given nothing

Mutual information
between X and Y

Setup:

18

Given a deep neural network where X and Y are discrete
random variables:

p(x|y)

Setup:

19

We identify the propagated values at layer 1 with
the vector T1

p(x|y)

Setup:

20

We identify the propagated values at layer i with the
vector Ti

p(x|y)

Setup:

21

We identify the values for every layer with their
corresponding vector.

p(x|y)

We identify the values for every layer with their
corresponding vector.

Setup:

22

And doing so, we get the following Markov chain.

We identify the values for every layer with their
corresponding vector.

Setup:

23

And doing so, we get the following Markov chain.

(Hint: Markov chain rhymes with data processing inequality)
I(Y, Ti) � I(Y, Ti+n) and I(X,Ti) � I(X,Ti+n)

Setup:

24

And doing so, we get the following Markov chain.

Next, pick your favourite layer, say Ti

Setup:

25

And doing so, we get the following Markov chain.

Next, pick your favourite layer, say Ti

26

"How much it knows about Y"

"How much it knows about X"

I(Y;T)

I(X;T)

Next, pick your favorite layer, say T.

We will plot T's current location on the

"information plane".

27

"How much it knows about Y"

I(Y;T)

I(X;T)

Then, we train our deep neural network for a bit.

 And plot the new corresponding distribution of T

"How much it knows about X"

28

"How much it knows about Y"

I(Y;T)

I(X;T)

We train a bit more...

"How much it knows about X"

29

"How much it knows about Y"

I(Y;T)

I(X;T)

And as we train, we trace the layer's trajectory in
the information plane.

"How much it knows about X"

30

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)Let's see what it looks
like for a fixed data point "bull"

31

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)Let's see what it looks
like for a fixed data point "bull"

32

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

(,)Let's see what it looks
like for a fixed data point "bull"

33

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

(,)Let's see what it looks
like for a fixed data point "bull"

34

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

(,)Let's see what it looks
like for a fixed data point "bull"

(,)"goat"

(,)

35

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

"goat"

(,)Let's see what it looks
like for a fixed data point "bull"

(,)
(,)

36

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

"goat"

"bull"

(,)Let's see what it looks
like for a fixed data point "bull"

(,)
(,)

37

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

"goat"

"bull"

(,)Let's see what it looks
like for a fixed data point "bull"

(,)
(,)

38

"H
ow

 m
uc

h
it

kn
ow

s
ab

ou
t Y

"

I(Y;T)

I(X;T)
"How much it knows about X"

(,)"dog"

"goat"

"bull"

(,)"bull"

(,)Let's see what it looks
like for a fixed data point "bull"

Numerical Experiments
and Results

Examining the dynamics of SGD in the mutual
information plane

Experimental Setup
• Explored fully connected feed-forward neural nets, with no other

architecture constraints: 7 fully connected hidden layers with
widths 12-10-7-5-4-3-2

• sigmoid activation on final layer, tanh activation on all other layers

• Binary decision task, synthetic data is used

• Experiment with 50 different randomized weight initializations and
50 different datasets generated from the same distribution

• trained with SGD to minimize the cross-entropy loss function,
and with no regularization

D ⇠ P (X,Y)

Dynamics in the
Information Plane

Dynamics in the
 Information Plane

• All 50 test runs follow similar paths in the information plane

• Two different phases of training: a fast ‘ERM reduction’
phase and a slower ‘representation compression’ phase

• In the first phase (~400 epochs), the test error is rapidly
reduced (increase in)

• In the second phase (from 400-9000 epochs) the error is
relatively unchanged but the layers lose input information
(decrease in)

I(T ;Y)

I(X;T)

Dynamics in the
 Information Plane

• All 50 test runs follow similar paths in the information plane

• Two different phases of training: a fast ‘ER reduction’ phase
and a slower ‘representation compression’ phase

• In the first phase (~400 epochs), the test error is rapidly
reduced (increase in)

• In the second phase (from 400-9000 epochs) the error is
relatively unchanged but the layers lose input information
(decrease in)

I(T ;Y)

I(X;T)

Dynamics in the
 Information Plane

• All 50 test runs follow similar paths in the information plane

• Two different phases of training: a fast ‘ER reduction’ phase
and a slower ‘representation compression’ phase

• In the first phase (~400 epochs), the test error is rapidly
reduced (increase in)

• In the second phase (from 400-9000 epochs) the error is
relatively unchanged but the layers lose input information
(decrease in)

I(T ;Y)

I(X;T)

Dynamics in the
 Information Plane

• All 50 test runs follow similar paths in the information plane

• Two different phases of training: a fast ‘ER reduction’ phase
and a slower ‘representation compression’ phase

• In the first phase (~400 epochs), the test error is rapidly
reduced (increase in)

• In the second phase (from 400-9000 epochs) the error is
relatively unchanged but the layers lose input information
(decrease in)

I(T ;Y)

I(X;T)

Representation
Compression

• The loss of input information occurs without any form of regularization

• This prevents overfitting since the layers lose irrelevant information
(“generalizing by forgetting”)

• However, overfitting can still occur with less data

5%, 45%, and 85% of the data respectively

Representation
Compression

• The loss of input information occurs without any form of regularization

• This prevents overfitting since the layers lose irrelevant information
(generalizing by forgetting)

• However, overfitting can still occur with less data

5%, 45%, and 85% of the data respectively

Representation
Compression

• The loss of input information occurs without any form of regularization

• This prevents overfitting since the layers lose irrelevant information
(generalizing by forgetting)

• However, overfitting can still occur with less data

5%, 45%, and 85% of the data respectively

Phase transitions

• The ‘ER reduction’ phase is called a drift phase, where the gradients are large
and the weights are changing rapidly (high signal-to-noise)

• The ‘Representation compression’ phase is called a diffusion phase, where
the gradients are small compared to their variance

The phase transition occurs at the dotted line

Phase transitions

• The ‘ER reduction’ phase is called a drift phase, where the gradients are large
and the weights are changing rapidly (high signal-to-noise)

• The ‘Representation compression’ phase is called a diffusion phase, where
the gradients are small compared to their variance (low signal-to-noise)

The phase transition occurs at the dotted line

Effectiveness of Deep Nets

• Because of the low Signal-to-noise Ratio in the diffusion
phase, the final weights obtained by the DNN are
effectively random

• Across different experiments, the correlations between
the weights of different neurons in the same layer was
very small

• “This indicates that there is a huge number of different
networks with essentially optimal performance, and
attempts to interpret single weights or single neutrons in
such networks can be meaningless”

Effectiveness of Deep Nets

• Because of the low Signal-to-noise Ratio in the diffusion
phase, the final weights obtained by the DNN are
effectively random

• Across different experiments, the correlations between
the weights of different neurons in the same layer was
very small

• “This indicates that there is a huge number of different
networks with essentially optimal performance, and
attempts to interpret single weights or single neutrons in
such networks can be meaningless”

Effectiveness of Deep Nets

• Because of the low Signal-to-noise Ratio in the diffusion
phase, the final weights obtained by the DNN are
effectively random

• Across different experiments, the correlations between
the weights of different neurons in the same layer was
very small

• “This indicates that there is a huge number of different
networks with essentially optimal performance, and
attempts to interpret single weights or single neurons in
such networks can be meaningless”

Why go deep?
• Faster ER minimization (in epochs)

• Faster representation compression time

Why go deep?
• Faster ER minimization (in epochs)

• Faster representation compression time (in epochs)

Discussions/Disclaimers

• The claims being made are certainly very interesting,
although the scope of experiments is limited: only one
specific distribution and one specific network are
examined.

• The paper acknowledges that different setups need to be
tested: do the results hold with different decision rules
and network architectures? And is this observed in “real
world” problems?

Discussions/Disclaimers

• The claims being made are certainly very interesting,
although the scope of experiments is limited: only one
specific distribution and one specific network are
examined.

• The paper acknowledges that different setups need to be
tested: do the results hold with different decision rules
and network architectures? And is this observed in “real
world” problems?

Discussions/Disclaimers
• As of now there is some controversy about whether or not these

claims hold up: see “On the Information Bottleneck Theory of
Deep Learning (Saxe et al., 2018)”

• “ Here we show that none of these claims hold true in the
general case. […] we demonstrate that the information plane
trajectory is predominantly a function of the neural nonlinearity
employed […] Moreover, we find that there is no evident causal
connection between compression and generalization: networks
that do not compress are still capable of generalization, and vice
versa. Next, we show that the compression phase, when it
exists, does not arise from stochasticity in training by
demonstrating that we can replicate the IB findings using full
batch gradient descent rather than stochastic gradient descent.”

The End

