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Problem:
The usual "black box" story: 

"Despite their great success, there is still 
no comprehensive understanding of the 

internal organization of Deep Neural 
Networks."



Solution:
Opening the blackbox using 

mutual information!
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Spoiler alert!
As we train a deep neural network, its layers will



1. Gain "information" about the true 
label and the input.


2. Then, will gain "information" about 
the true label but will loose 
"information" about the input!
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During that second stage, it forgets the details of the 
input that are irrelevant to the task.  
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Spoiler alert!
As we train a deep neural network, its layers will

(Not unlike Picasso's deconstruction of the bull.)



Spoiler alert!
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Before delving in, we first need to define what we mean by 
"information".



Spoiler alert!

1313

Before delving in, we first need to define what we mean by 
"information".

By information, we mean mutual information.



What is mutual information?
For discrete random variables X and Y :

H(X) := �
nX

i=1

p(xi) log (p(xi))
• Entropy of X 

given nothing
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Mutual information 
between X and Y
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Given a deep neural network where X and Y are discrete 
random variables: 

p(x|y)
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We identify the propagated values at layer 1 with 
the vector T1

p(x|y)
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We identify the propagated values at layer i with the 
vector Ti

p(x|y)
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We identify the values for every layer with their 
corresponding vector.

p(x|y)
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And doing so, we get the following Markov chain.
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And doing so, we get the following Markov chain.

(Hint: Markov chain rhymes with data processing inequality)
I(Y, Ti) � I(Y, Ti+n) and I(X,Ti) � I(X,Ti+n)
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And doing so, we get the following Markov chain.

Next, pick your favourite layer, say Ti
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"How much it knows about Y"

"How much it knows about X"

I(Y;T)

I(X;T)

Next, pick your favorite layer, say T.

We will plot T's current location on the 

"information plane".
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"How much it knows about Y"

I(Y;T)

I(X;T)

Then, we train our deep neural network for a bit.


 And plot the new corresponding distribution of T

"How much it knows about X"
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"How much it knows about Y"

I(Y;T)

I(X;T)

We train a bit more...


"How much it knows about X"
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"How much it knows about Y"

I(Y;T)

I(X;T)

And as we train, we trace the layer's trajectory in 
the information plane.

"How much it knows about X"
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like for a fixed data point "bull"
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Numerical Experiments 
and Results

Examining the dynamics of SGD in the mutual 
information plane



Experimental Setup
• Explored fully connected feed-forward neural nets, with no other 

architecture constraints: 7 fully connected hidden layers with 
widths 12-10-7-5-4-3-2


• sigmoid activation on final layer, tanh activation on all other layers


• Binary decision task, synthetic data is used 


• Experiment with 50 different randomized weight initializations and 
50 different datasets generated from the same distribution


• trained with SGD to minimize the cross-entropy loss function, 
and with no regularization 

D ⇠ P (X,Y )



Dynamics in the 
Information Plane



Dynamics in the 
 Information Plane

• All 50 test runs follow similar paths in the information plane


• Two different phases of training: a fast ‘ERM reduction’ 
phase and a slower ‘representation compression’ phase


• In the first phase (~400 epochs), the test error is rapidly 
reduced (increase in             )


• In the second phase (from 400-9000 epochs) the error is 
relatively unchanged but the layers lose input information 
(decrease in            ) 

I(T ;Y )

I(X;T )
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Representation  
Compression

• The loss of input information occurs without any form of regularization


• This prevents overfitting since the layers lose irrelevant information 
(“generalizing by forgetting”)


• However, overfitting can still occur with less data

5%, 45%, and 85% of the data respectively
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Phase transitions

• The ‘ER reduction’ phase is called a drift phase, where the gradients are large 
and the weights are changing rapidly (high signal-to-noise)


• The ‘Representation compression’ phase is called a diffusion phase, where 
the gradients are small compared to their variance

The phase transition occurs at the dotted line
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• The ‘ER reduction’ phase is called a drift phase, where the gradients are large 
and the weights are changing rapidly (high signal-to-noise)


• The ‘Representation compression’ phase is called a diffusion phase, where 
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Effectiveness of Deep Nets

• Because of the low Signal-to-noise Ratio in the diffusion 
phase, the final weights obtained by the DNN are 
effectively random


• Across different experiments, the correlations between 
the weights of different neurons in the same layer was 
very small


• “This indicates that there is a huge number of different 
networks with essentially optimal performance, and 
attempts to interpret single weights or single neutrons in 
such networks can be meaningless”
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Why go deep?
• Faster ER minimization (in epochs) 


• Faster representation compression time
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Discussions/Disclaimers

• The claims being made are certainly very interesting, 
although the scope of experiments is limited: only one 
specific distribution and one specific network are 
examined.


• The paper acknowledges that different setups need to be 
tested: do the results hold with different decision rules 
and network architectures? And is this observed in “real 
world” problems?
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Discussions/Disclaimers
• As of now there is some controversy about whether or not these 

claims hold up: see “On the Information Bottleneck Theory of 
Deep Learning (Saxe et al., 2018)”


• “ Here we show that none of these claims hold true in the 
general case. […] we demonstrate that the information plane 
trajectory is predominantly a function of the neural nonlinearity 
employed […] Moreover, we find that there is no evident causal 
connection between compression and generalization: networks 
that do not compress are still capable of generalization, and vice 
versa. Next, we show that the compression phase, when it 
exists, does not arise from stochasticity in training by 
demonstrating that we can replicate the IB findings using full 
batch gradient descent rather than stochastic gradient descent.”



The End


