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Deep learning through the lens of information theory

Information 
Theory



Representation learning

Data z1 z2 z3 zL

Representation: some function of the data that is useful for a given task



What makes a good representation?
● a function of future data
● constructed from past data

sufficient
invariant
minimal &
disentangled

● that is useful for a task
● independent to nuisance factors
● and is easier to use than the data itself



Information theory
Setting: 
● Task: predict output y given input data x
● Representation z ~ p(z | x) is a stochastic function of the data x

Entropy H(x): amount of information in a random variable x

Conditional Entropy H(y | x): amount of information in y when x is known 

Mutual information I(x; y): amount of information shared by x and y

                                       I(x; y) = H(y) -  H(y | x)



● Sufficient: I(z; y) = I(x; y)

● Minimal: I(z; x) is minimal among sufficient z

● Invariant to any nuisance n: I(z; n) = 0 for all n with I(n; y) = 0

● Maximally disentangled: minimize TC(z) = KL(p(z) || ᵎi p(zi))

What makes a good representation? (formal)



Representation perspective vs weights perspective

z1x z2 zL

w

zi vs w



Outline
Introduction

Part 1: Learning minimal representations
Result: minimality implies invariance

Part 2: Learning minimal weights
Result: information in the weights is good measure of complexity

Part 3: Duality of representation and weights
Result: minimal weights → invariant & disentangled representation
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IB Lagrangian
Recall: 

Sufficiency:                 , or equivalently if I(z;y) = I(x;y)

Minimal: I(z;x) is smallest among all the sufficient representations

IB Lagrangian (Tischby et al. 1999):



Data Processing Inequality

For a Markov chain,

DPI ensures that:

Basically, we keep losing information as we propagate through the layers



Nuisance
Nuisance: Any random variable that affects the data x; but is irrelevant to the task y

A representation is invariant to a nuisance n, if: 

A representation is maximally insensitive to a nuisance n, if:
   It minimizes I(z;n) among all sufficient representations



Minimality implies Invariance

Proposition:

  

Consequence: Minimality promotes Invariance 

Invariance emerges from elimination of irrelevant information! 

Invariance
minimality

constant



Ways to impose invariance
Explicit regularisation : IB Lagrangian

Implicit regularization: 

- Stacking layers (due to DPI)
- Bottlenecks (Eg: max pooling)
- Noise (Eg: gradient variance, dropout)
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Generalization: the puzzle    

Deep networks

One million dollar question: Is there a better notion of complexity for deep networks?  

E.g Zhang et al (2016): deep networks fit random labels (high Rademacher complexity)



Overfitting: a view from information theory

Bayesian setting:

Cross-entropy loss: 

data distribution and dataset

learned distribution

joint distribution



Overfitting: a view from information theory
Information decomposition

Suggests regularization: 

● Minimizing I(w,D) is an old idea Hinton & Van Camp (1993)
● Reduces to variational lower-bound when  
● Related to variational dropout Kingma et al. (2015)



Experiments: random labels



Bias-variance trade off 

Information in the weights is a good measure of complexity



Bonus: SGD finds low information minima

Implicit regularization

SGD finds flat minima…  

...and flat minima have low information ! 

Hochreiter & Schmidhuber (1997)
Hessian eigenvalues
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Disentanglement
Let’s say we find a representation that is:

- Sufficient
- Minimal
- Invariant (or maximally invariant) to nuisances

Such a representation is  not unique… (no bijective mapping)

… And that is good! 



Disentanglement

So, we can also try to make the representation maximally disentangled; 
i.e minimize Total Correlation TC(z);



A bound on minimality

 what it tells you is this:

is tightly bounded 
        (on both sides) by an increasing   
function of  

Recall:

- TC(z)        0; implies disentanglement
- Minimizing I(x;z) increases invariance

     
   minimal & disentangled representations  ⇔ minimal weights!



Experiment: nuisance invariance 

IG Lagrangian (weights perspective):

● Sensitivity to nuisance n measured by I(z,n) 
● I(z,n) decreases with beta: regularizer 

promotes invariance!



● Minimal (sufficient) representation are invariant 
explicit regularization (IB) or implicit architecture bias     

(depth) promote invariance  

x

I(w, D)

Takeaways

● Information in the weights as a measure of  
complexity of the network                                                       
low information prevents overfitting                                                

● Information in the weights is closely related to 
minimality and disentanglement

● SGD finds low information minima



Thank you 


