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Deep learning through the lens of information theory
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Representation learning

Representation: some function of the data that is useful for a given task
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What makes a good representation?

a function of future data

constructed from past data

that is useful for a task

independent to nuisance factors

and is easier to use than the data itself

sufficient
invariant
minimal &
disentangled



Information theory

Setting:

e Task: predict output y given input data x

e Representation z ~ p(z | x) is a stochastic function of the data x
Entropy H(x): amount of information in a random variable x

Conditional Entropy H(y | x): amount of information in y when x is known

Mutual information /(x; y): amount of information shared by x and y

I(x; y) =H(y)- H(y|x)



What makes a good representation”? (formal)
e Sufficient: I(z; y) = I(x; )
e Minimal: /(z; x) is minimal among sufficient z
e Invariant to any nuisance n: I(z; n) = 0 for all n with I(n; y) =0

e Maximally disentangled: minimize TC(z) = KL(p(z) || IL. p(z))



Representation perspective vs weights perspective
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Outline

Part 1: Learning minimal representations
Result: minimality implies invariance

Part 2: Learning minimal weights
Result: information in the weights is good measure of complexity

Part 3: Duality of representation and weights
Result: minimal weights — invariant & disentangled representation
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Part 1: Learning minimal representations



IB Lagrangian
Recall:

Sufficiency: y_ll x | z, or equivalently if I(z;y) = I(x;y)

Minimal: /(z;x) is smallest among all the sufficient representations

IB Lagrangian (Tischby et al. 1999):
L(p(z|z)) = H(y|z) + B1(z;x),



Data Processing Inequality

For a Markov chain,
r—2z—=Yy

DPI ensures that:
I(z;2) 2 I(z;y)

Basically, we keep losing information as we propagate through the layers



Nuisance

Nuisance: Any random variable that affects the data x; but is irrelevant to the task y
y Al n, or equivalently I(y;n) = 0.

A representation is invariant to a nuisance n, if:

z . n, or I(z;n) = 0.

A representation is maximally insensitive to a nuisance n, if:
It minimizes /(z;n) among all sufficient representations



Minimality implies Invariance

Proposition:
/eonstant
I(n;2) < I(z;z) — I(z;9)
Invariance—
minimality

Consequence: Minimality promotes Invariance

Invariance emerges from elimination of irrelevant information!



Ways to impose invariance
Explicit regularisation : IB Lagrangian

L(p(z|z)) = H(y|z) + BI(z;T),

Implicit regularization:

- Stacking layers (due to DPI)
- Bottlenecks (Eg: max pooling)
- Noise (Eg: gradient variance, dropout)
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Part 2: Learning minimal weights



Generalization: the puzzle

Total Error

Variance

Optimum Model Complexity

Error

Deep networks
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E.g Zhang et al (2016): deep networks fit random labels (high Rademacher complexity)

One million dollar question: Is there a better notion of complexity for deep networks?



Overfitting: a view from information theory

Bayesian setting:

0 ~ p(6), D= (x,y) ~ pg(z,y) data distribution and dataset
qw(T,y), w~ q(w|x,y) learned distribution
p(x,y,0,w) = p(0) p(x,y|0) g(w|x,y) joint distribution

Cross-entropy loss:

Ep,q — E(x,y)wp(x,y) Ewwq(w|x,y) [_ log Qu (X, Y)]



Overfitting: a view from information theory

Information decomposition

Lpg = HDI|0) + I100;D|w) + KL(gllp) - I(Dw]0)
N——’ N - / N——— N ——
intrinsic error sufficiency model efficiency overfitting
Suggests regularization: L(q(w | D)) = Ly + pI(w;D)
e Minimizing I(w,D) is an old idea Hinton & Van Camp (1993)

e Reduces to variational lower-bound when (3 =1
e Related to variational dropout Kingma et al. (2015)



Experiments: random labels

Random labels

Information Complexity ~ log,y BN

Real labels
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Bias-variance trade off
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Information in the weights is a good measure of complexity



Bonus: SGD finds low information minima

Implicit regularization

SGD finds flat minima... m
HHW

Hochreiter & Schmidhuber (1997)

—_

I(w; D) < 5Kllog i, + log K], - K log(K*5/2)
K = dim(w)
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Part 3: Duality of representation and weights



Disentanglement

Let's say we find a representation that is:

- Sufficient
- Minimal
- Invariant (or maximally invariant) to nuisances

Such a representation is not unique... (no bijective mapping)

... And that is good!



Disentanglement

So, we can also try to make the representation maximally disentangled,
i.e minimize Total Correlation TC(z);

TC(z) = KL(p(2) || L (=) ),



A bound on minimality

I(z;2) + TC(2)

g(a) <

wW s ) B

where ¢ = O(1/dim(z)) < 1, g(a) = log (1 — e7%)/2 and « is related to I~(w~, D) by a =
exp {—I(W;D)/dim(W)}. In particular, I(x;z)+TC(z) is tightly bounded by I(W ;D) and

increases strictly with it.
what it tells you is this:

I(z;2z) + TC(z) is tightly bounded
(on both sides) by an increasing

function of (1. D)

Recall:

- TC(z2) 0; implies disentanglement
- Minimizing /(x;z) increases invariance

minimal & disentangled representations < minimal weights!



Experiment: nuisance invariance
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|G Lagrangian (weights perspective):

L(q(w|D)) = Hpq(yIx, w) + BI(w; D)

Sensitivity to nuisance n measured by |(z,n)
|(z,n) decreases with beta: regularizer
promotes invariance!



Takeaways

Minimal (sufficient) representation are invariant
explicit regularization (IB) or implicit architecture bias

(depth) promote invariance

Information in the weights as a measure of

complexity of the network
low information prevents overfitting

Information in the weights is closely related to
minimality and disentanglement

SGD finds low information minima
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Thank you



