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1 Summary
In the previous lecture we discussed about the Occam’s Razor Bound and PAC Bayes.

In this lecture we introduce the concept of a learning algorithm A. We also present the first step in order to define
bounds dependent on A. We will first go over the PAC Learning framework and restate the definitions that are also
important for stability and generalization.

2 Recap: PAC Learning
Before we go on, we need to make a couple of assumptions and definitions for our PAC learning framework, which
we will also use when we discuss stability.

Definition 1 (Hypothesis).
h ∈ H

we assume that we get our hypothesis h from a hypothesis classH.

It is important to note that this h ∈ H is a specific model, not a specific architecture.

Definition 2 (Training dataset).
S = {z1, z2, · · · , zn}

such that each zi is i.i.d. sampled from D, where D is the true data distribution.

Definition 3 (Chosen hypothesis).
hS

This is the hypothesis obtained given a particular dataset S.

We also need to make a couple of definitions for risk minimization.

Definition 4 (Empirical risk).

R̂S [hS ] =
1

n

n∑
i=1

`[hS(xi), yi] =
1

n

n∑
i=1

`[hS , zi]

where ` is the loss function: ` : Y × Y → R+

Definition 5 (Population risk).
R[hS ] = Ez∼D`[hS(x), y]

This is the true risk which we cannot compute since we do not have access to the distribution D.
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The population risk measures how well our model performs on unseen data. Although we do not have the population
risk, we can find a bound for it. We start by defining the generalization error (generalization gap):

ε =| R̂S [h]−R[h] |

What we care about in this framework is the generalization error for our chosen hypothesis hs, which we denote as
ε = ε(hS). In the previous lectures we obtained the following bound for the generalization error.
We showed that for a fixed h if n = O

(
log( 1

δ )

ε2

)
, the difference between the population risk and the empirical risk will

be smaller than ε with probability ≥ 1− δ:
R[hS ] ≤ R̂S [hS ] + ε

where ε is shown to be equal to
√

log|H|+ log 2
δ

2n , so

R[hS ] ≤ R̂S [hS ] +

√
log | H | + log 2

δ

2n

Note that in finding this bound we assumed thatH is countable and finite.
Next step was to find a bound for all hi ∈ H. We used Occam’s bound and union bound to ensure the former.
We defined the prior P :

Definition 6. ∑
h∈H

P (h) = 1

And proved:

Theorem 7 (Given prior P on set of hypothesisH, with probability ≥ 1− δ over training dataset S).

∀h ∈ H, R[h]− R̂s[h] ≤

√
ln 1

P (h) + ln 2
δ

2n

For the case of uncountable H, we defined the PAC-Bayes bound. For this, besides the prior P defined for Occam’s
bound, we introduced the “Posterior” Q over H. We then defined another bound dependent on the KL-divergence
between Q and P .

Theorem 8 (PAC-Bayes bound). With probability 1− δ:

∀h ∈ H, Eh∼Q[R[h]]− Eh∼Q[R̂S [h]] ≤

√
KL(Q||P ) + ln 2

δ

2(n− 1)

where KL(Q||P ) = Eh∼Q ln
[
Q(h)
P (h)

]
.

Note that the bound will be as tight as Q is close to P . Note also that P has to be chosen in advance, before data is
seen and any hypothesis is evaluated.

Possible choices of Q:
Different choices of Q result in:

Choice a

• Q = hS with probability 1

– P (hS)→∞ and the bound explodes
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Choice b

• Q = P

– KL(Q||P ) = 0

– bound becomes Eh∼Q[R[h]]− Eh∼Q[R̂S [h]] ≤
√

ln 2
δ

2(n−1)

– bound is tighter due to KL(Q||P ) = 0 but there is no way of bounding RS [h] with Eh∼Q[R[h]]

Choice c - common “works”

• Q = N (hS , I)

– KL(Q||P ) is finite

– We can find bounds for RS [h], for instance, if RS [h] is convex around h, Jensen’s inequality will give
RS [h] ≤ Eh∼Q[R[h]]

3 Stability
In past lectures, we defined generalization bounds regardless of the learning algorithm. Now we introduce the notion
of stability along with its effect on the previous bounds seen in class.
In order to do so, we define a “new variable” A such that:

Definition 9 (Learning Algorithm).
A : Zn → H

where Zn = X × Y .

Above definition implies that ∀S ∈ Zn:

hS = A(S). (1)

Moreover, before proceeding to the definition of stability, we define the perturbed dataset Si,z and the defect D[hs] of
hypothesis hs by the following:

Definition 10 (Perturbed dataset). Consider S = {z1, ..., zi, ..., zn}, thus ∀z ∈ Zn and ∀i ∈ {1, ..., n}:

Si,z = {z1, ..., zi−1, z, zi−1, ..., zn}

Definition 11 (Defect).
D[hS ] = R̂[hS ]−Rs[hS ]

As per the notion of stability, we define:

Definition 12 (Stability). A is β-uniformly stable ∀(S, z) ∈ Zn and ∀i ∈ {1, ..., n} if:

sup
z′∈Z

|`[hS , z′]− `[hSi,z , z′]| ≤ β

where hSi,z = A(Si,z).

Note that hSi,z is the resulting hS after a perturbation in S.
Now we state the McDiarmid’s inequality without proof. It will come useful in future steps:
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Theorem 13 (McDiarmid’s inequality). Let V1, V2, . . . Vn be a set of independent random variables; and v1, v2, . . . vn
be samples drawn from these random variables. Let also F be a function that has the following property:

sup
v1,v2,...,vn,v′i

|F (v1, v2, . . . , vn)− F (v1, v2, . . . , vi−1, v′i, vi+1 . . . vn)| ≤ ci

then

P (|F (V1, V2, . . . , Vn)− E[F (V1, V2, . . . , Vn)]|) > ε) ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)

4 Bounding the expectation of the defect
We need two steps to define A dependent bounds for D[hS ]:

1. Bounding EsD[hS ];

2. Bounding D[hS ] when S → Si,z .

We proceed to the first step and leave the remaining results for the next class.

Theorem 14 (Bound for the defect’s expectation). if A is β-stable, thus:

ESD[hS ] ≤ β

Proof.

ESD[hS ] = ES
[
R̂[hS ]−RS [hS ]

]
,

= ES

[
1

n

∑
i

`[hS , zi]− Ez`[hS , z]

]
,

(2)

which can be rewritten as (see Fubini’s theorem1 [1] for details on changing order of integration of double integrals):

= ES,z

[
1

n

∑
i

`[hS , zi]− `[hS , z]

]
,

= ES,z

[
1

n

∑
i

(`[hSi,z , z]− `[hS , z])

]
,

(3)

now we use the β-stability of A assumption, which upper-bounds `[hSi,z , z]− `[hS , z], and write:

≤ ES,z

[
1

n

∑
i

β

]
,

≤ β.
(4)
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