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1 Summary
In the previous lecture we introduced the basics of Statistical Learning Theory. We established the setting for PAC
Learning and defined the concepts of risk, empirical risk and generalization gap. We then used the Hoeffding’s
Inequality to establish a bound on the generalization gap for countable hypothesis classesH.
In this lecture we continue our crash course on Statistical Learning Theory and learn about the Occam’s Razor Bound
and PAC Bayes, which build upon what we saw in the previous lecture.

2 PAC Learning
Probably Approximate Correct (PAC) Learning is a framework for analyzing machine learning algorithms.
Assume that we have a hypothesis class H - the set of all possible model configurations - and a set of samples
S = {z1, z2, ..., zn} with zi = (xi, yi) and zi D i.i.d - where D is the data distribution. Assume also that we have
defined a function l : YxY → [0, 1] (loss function) that quantifies the mismatch between two elements of Y . In this
PAC Learning setting, we define:

Definition 1 (Risk).
R[h] = E(x,y)∼(D)[l(h(x), y)]

Definition 2 (Empirical Risk (evaluated on the data samples)).

R̂s[h] =
1

n

n∑
i=1

l(h(xi, yi))

Definition 3 (Generalization Gap).
εgen(hs) = |R[hs]− R̂s[hs]|

We previously obtained the following bound for the generalization error:

Theorem 4. Fix h ∈ H, if

n = O

(
log( 1δ )

ε2

)
then

|R[h]− R̂s[h]| < ε

with probability ≥ 1− δ

Note: to obtain this bound we have assumed thatH is countable and finite.
This bound is for a specific h, but how can we guarantee that all hi ∈ H would have ”good” generalization? Motivated
by this, we find a bound for all hi as follows.
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We start by assuming we have a uniform probability distribution over [H]:

δ(h) =
δ

|H|

Observe that: ∑
h∈H

δ(h) = δ

|H|∑
1

1

|H|
= δ

Theorem 5. If

n = O

(
log|H|+ log 1

δ

ε2

)
then

|R[h]− R̂s[h]| < ε

with probability ≥ 1− δ for all h ∈ H.

Now we show an example on how to compute |H|. We define the perceptron class of models as:

l(wTx+ b), w ∈ Rd, b ∈ R

To represent this model, assuming we use 32 bit floats for each learnable parameter, we need 32(d+ 1) bits, so:

|H| = 232(d+1)

log|H| = log(232(d+1))

log|H| = (d+ 1)log(232)

3 Occam’s (Razor) bound
Simply put, an Occam’s bound states that if two hypotheses explain the data equally well, the one that makes less
assumptions is generally preferable. In this context, we’ll use it to state that the generalization loss is near training loss
when the number of bits needed to write the rule is small compared to the sample size [1]. For the assumption to hold
true, we consider thatH is finite and we define the following:

Definition 6.

ε(h) =

√
ln 1
P (h) + ln 2

δ

2n

Definition 7. ∑
h∈H

P (h) = 1

Theorem 8. Given P onH,
∑
P (h) = 1, a sample size n, with probability at least ≥ 1− δ over S

∀h ∈ H, R[h] ≤ R̂s[h] +

√
ln 1
P (h) + ln 2

δ

2n

Proof. We’re gonna start by fixing a single hypothesis h and using the Chernoff Bound.

PS∼D(|R̂s[h]−R[h] ≥ ε) ≤ 2e−2nε(h)
2

Where:
2e−2nε(h)

2

= δ(h) = δP(h)
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For a fixed h, the following statement holds true with a probability of P(h)δ.

R[h] > R̂s[h] + ε(h)

By union bound, we get that the probability it holds true for any h is∑
h∈H

P (h)δ

δ
∑
h∈H

P (h)

By the Definition 7, we get a probability of δ, which means that its opposite holds true with a probability of 1− δ.

R[h] ≤ R̂s[h] + ε(h)

Substituting ε(h) by Definition 6 gives us Theorem 8.

Figure 1: Visual representation of the bounds on all h’s. The top part represents all different hypotheses with an
uniform bound. The lower part represents the region of interest in which we want a stronger ”bet”.

4 PAC Bayes
In PAC Bayes the basic idea is that we add a ”posterior” Q on H, in addition to the prior D we already had in the
Occam’s Bound. With the addition of this posterior, we can derive a new bound on the generalization gap that depends
on the KL-divergence between the prior and the posterior.

Definition 9 (Kullback-Leibler Divergence). The Kullback-Leibler (KL) divergence between two distributions Q and
P is defined as:

D(Q||P ) = Eh∼Q[ln(
Q(h)

P (h)
)]

3



IFT 6085 - Theoretical principles for deep learning Lecture 8: February 01, 2018

The KL-divergence is a measure of how close two probability distributions are. Note that the KL-divergence is not
necessarily symmetric - D(Q||P ) 6= D(P ||Q) - and therefore it is not a metric. Also note that P = Q ⇐⇒
D(P ||Q) = 0.
In the following bound, if we choose a ”good” posterior that is close to the prior, then the KL-divergence will become
smaller and our bound will be tighter.

Theorem 10 (PAC Bayes bound). Given a prior probability distribution P over a hypothesis class H and a posterior
probability distribution Q over H. Then:

Eh∼Q[R[h]] ≤ Eh∼Q[R̂s[h]] +

√
D(Q||P ) + ln(nδ )

2(n− 1)

with probability ≥ 1− δ
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