
IFT 6085 - Lecture 6
Nesterov’s Accelerated Gradient, Stochastic Gradient Descent

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribe(s): Charles Ashby & Gabriele Prato Instructor: Ioannis Mitliagkas

1 Summary
This lecture covers the following elements of optimization theory:

• Failing case of Polyak’s momentum

• Nesterov momentum

• Stochastic gradient descent

Most of the lecture has been adapted from Bubeck [1], Lessard et al. [2], Nesterov [3] and Shalev-Shwartz S. [4].

2 Failing case of Polyak’s Momentum
In the previous lecture we took a look at Polyak’s momentum algorithm (or heavy-ball method), with iteration step
given by:

xt+1 = xt − α∇f(xt) + µ(xt − xt−1), µ ∈ [0, 1], α > 0 (1)

In their 2015 paper, Lessard et al. [2] show that there exists a convex function f(x) and specific hyperparameters
choices for which the heavy-ball method fails to converge. We give here only the intuition behind the malfunction
of the algorithm as well as empirical results taken from the paper because the whole proof is out of the scope of this
lecture.

Let f be defined by its gradient as:

∇f(x) =


25x, if x < 1

x+ 24, if 1 ≤ x < 2

25x− 24, otherwise

Figure 1 displays the first 50 iterates of Polyak’s momentum algorithm using µ = 4
9 , α = 1

9 and x0 = 3.3.

Figure 1: Value of xk for the 50 first iterations of Polyak’s momentum algorithm. We can see that the values bounce
between 3 points, the dashed red lines separate the pieces of f(x). Taken from Lessard et al. [2].

1

IFT 6085 - Theoretical principles for deep learning Lecture 6: January 25, 2018

The proof revolves around the idea that the iterates are stuck in a limit cycle. To prove that, the authors show that the
following sub-series of the iterates tend to three points that are not the optimal value of f .

x3n → p, x3n+1 → q, x3n+2 → r

They show that p ≈ 0.65, q ≈ −1.80 and r ≈ 2.12. Figure 2 plots f(x) for these 3 points.

Figure 2: Illustration of the limit values of the failing case of Polyak’s momentum algorithm, the dashed red lines
separate the pieces of f . Image taken from Lessard et al. [2].

3 Nesterov Accelerated Gradient

3.1 Motivation
In the last section, we saw that Polyak’s momentum algorithm can fail to converge for relatively simple convex opti-
mization problems (it can be shown that the counter example we presented is a strongly-convex function). Leveraging
the idea of momentum introduced by Polyak, Nesterov solved that problem by finding an algorithm achieving the
same acceleration as the heavy-ball method, but that can be shown to converge for general convex functions. We show
a glimpse of the proof of convergence at the end of this section.

Algorithm 1 Nesterov Accelerated Gradient
Require: training time T, learning rate γ, momentum µ and parameter’s initialization x0.
y0 ← x0
for t← 0 to T − 1 do

yt+1 = xt − γ∇f(xt)
xt+1 = yt+1 + µ(yt+1 − yt)

end
return xT−1

The main difference between Polyak’s and Nesterov’s algorithm come from the fact that the latter has two sister se-
quences working together to produce a ”corrective” movement like we can see in figure 3.

Rewriting these two sequences as one yields:

xt+1 = xt + µ(xt − xt−1)− γ∇f(xt + µ(xt − xt−1)) (2)

Comparing with (1), we see that Polyak’s method evaluates the gradient before adding momentum, while Nesterov’s
algorithm evaluates the gradient after applying momentum.

2

IFT 6085 - Theoretical principles for deep learning Lecture 6: January 25, 2018

Figure 3: Comparison between Polyak and Nesterov momentum. Notice how the gradient step with Polyak’s momen-
tum is always perpendicular to the level set.

Table 1 gives the convergence rate (upper bound on the sub-optimality) for different classes of functions for gradient
descent and Nesterov accelerated gradient.

Table 1: Convergence rate for Gradient Descent & Nesterov Accelerated Gradient

Class of Function GD NAG

Smooth O(1/T) O(1/T 2)

Smooth & Strongly-Convex O
(
exp

(
−Tκ

))
O
(
exp

(
− T√

κ

))
As we can see, Nesterov Augmented Gradient gives acceleration in the case of smooth and strongly convex functions
that we had with Polyak’s momentum for quadratic functions. This is great, because we get the guarantee for a more
general class of functions. Recall that if f is α-strongly convex and β-smooth then κ = β

α . Therefore, when β >> α
(i.e. some dimensions have very steep curvature), the acceleration becomes very significant.

3.2 Convergence Proof for Nesterov Accelerated Gradient
In this section, we state the main theorems behind the proof of convergence for Nesterov Accelerated Gradient for
general convex functions. The first tool we will need is called an estimate sequence.

Definition 1 (Estimate Sequence). A pair of sequences {φk(x)}∞x=0 and {λk}∞k=0 where λk ≥ 0, is called an Estimate
Sequence if:

• λk→ 0 when k →∞

• ∀x ∈ Rn,∀k ≥ 0, the following holds:

φk(x) ≤ (1− λk)f(x) + λkφ0(x)

Figure 4 illustrates the way estimate sequences work, as we can see, if φ0(x) ≥ f(x) then when k → ∞, φ(x) → f ,
∀x ∈ Rd.

3

IFT 6085 - Theoretical principles for deep learning Lecture 6: January 25, 2018

Figure 4: Illustration of an estimate sequence, we can see that when k →∞, φ gets closer and closer to f .

The idea is to find an estimate sequence φ to help us minimize f . To do so, the author introduce the following result:

Theorem 2 (Lemma 2.2.1 of Nesterov’s Book [3]). If we have f(xk) ≤ φ∗k where φ∗k = min
x∈Rn

φk(x), then:

f(xk)− f(x∗) ≤ λk [φ0(x∗)− f(x∗)]

Since φ0(x∗) − f(x∗) is a fixed quantity, all that is left to do is find an estimate sequence φk and λk such that
f(xk) ≤ φ∗k to get an upper bound on the sub-optimality. Figure 5 presents a visualization of lemma 2.2.1.

Figure 5: Illustration of lemma 2.2.1

The rest of the proof is all about putting these pieces together: designing an estimate sequence with the right rate,
while guaranteeing that NAG satisfies the assumption of Theorem 2 (f(xk) ≤ φ∗k).

4 Stochastic Gradient Descent

4.1 Motivation
Like we saw in the last lecture, Gradient Descent is not subject to variance since at every step we compute the average
gradient using the whole dataset. The downside is that every step is very computationally expensive, O(nd) per iter-
ation, where n is the number of samples in our dataset and d is the number of dimensions of x. Since we need O(d)
iterations to converge, the total problem cost is about O(nd2).

Gradient Descent becomes impractical when dealing with large datasets. This is where Stochastic Gradient Descent
comes in. It’s a modified version of Gradient Descent which doesn’t use the whole set of examples to compute the
gradient at every step. By doing so, we can reduce computation all the way down to O(d) per iteration, instead of

4

IFT 6085 - Theoretical principles for deep learning Lecture 6: January 25, 2018

O(nd).

Algorithm 2 Stochastic Gradient Descent
Require: training time T, learning rate γ, batch size K and parameter’s initialization x0.
for t← 0 to T − 1 do

Sample (i1, ..., iK) ∼ UK(1, ..., n)

xt+1 = xt − γ 1
K

∑K
j=1∇fij (xt)

end
return xT−1

Note that in expectation, we converge like gradient descent, since Ei∼U(1,...,n) [∇fi(xt)] = ∇f(xt), therefore, the
expected iterate of SGD converges to the optimum. The downside is that stochasticity brings variance. Even if SGD is
shown to converge, the variance can seriously handicap the convergence rate as we will see. This is especially true the
smaller the batch size is, as variance is inversely proportional to the number of examples used to compute the gradient
at every step.

SGD’s convergence rate for Lipschitz & convex functions is O(1√
T
) and O(1

T) for strongly convex. More iterations
are needed to reach the same accuracy as GD, but the iterations are far cheaper.

4.2 Bias-Variance Trade-off
Recall from the last lecture that the iteration step at time t for Gradient Descent is given by xt+1 = xt − γ∇f(xt)
where∇f(x) = 1

n

∑n
i=1 fi(x). The variance from SGD comes from the fact that we do not take the average gradient

over the whole dataset.

When training begins, the model weights x are more than likely very far from the optimal value x∗ = minx f(x),
therefore, most of our data points xi, agree on the direction of the gradient. (see the high bias region in Figure 6)

However, when training goes on, most of the model weights are already close to the optimum, some are well tunned
and other’s aren’t, this is where the variance has a significant impact on our convergence rate because almost all sam-
ples in our batch will produce gradients pointing in different directions, therefore, if we keep the same step size we
will bounce around the optimum. This is called the noise ball effect.

To avoid bouncing around the minimum, we can use a decaying step size. The blue line in Figure 6 illustrates what
happens when we reduce the variance by decaying the step size, another trick to reduce the variance would be to
increase the batch size (in the limit we would get the same convergence rate as Gradient Descent).

Figure 6: Convergence for Gradient Descent and Stochastic Gradient Descent. The blue line on the left plot illustrates
what happens when we decay the step size. The red line shows what happens with constant step size, notice how it
flattens out on the left plot.

5

IFT 6085 - Theoretical principles for deep learning Lecture 6: January 25, 2018

References
[1] S. Bubeck. Convex Optimization: Algorithms and Complexity. ArXiv e-prints, Nov. 2015.

[2] L. Lessard, B. Recht, and A. Packard. Analysis and Design of Optimization Algorithms via Integral Quadratic
Constraints. ArXiv e-prints, Aug. 2014.

[3] Y. Nesterov. Introductory lecture on convex programming. ISBN, 1998.

[4] B.-D. S. Shalev-Shwartz S. Understanding machine learning: From theory to algorithms. Cambridge, 2014.

6

	Summary
	Failing case of Polyak's Momentum
	Nesterov Accelerated Gradient
	Motivation
	Convergence Proof for Nesterov Accelerated Gradient

	Stochastic Gradient Descent
	Motivation
	Bias-Variance Trade-off

