
IFT 6085 - Lecture 5
Accelerated Methods
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Scribes: Aldo Lamarre, Breandan Considine Instructor: Ioannis Mitliagkas

1 Summary
Previously, we have seen some convergence guarantees, tightness bounds and topics in convex analysis. We established
worst case convergence guarantees for various gradient descent algorithms on several families of convex functions:

Property of f Rate of convergence
L-lipschitz D1L√

T

β-smooth D2
1β
T

α-strongly convex and L-lipschitz L2

αT

α-strongly convex and β-smooth D2
1e

−T
κ

Weak Assumptions Strong assumptions
λ− Convexity Strong Convexity

Lipschitz β-Smoothness
Continuity

In this lecture we discuss the optimal learning rate for gradient descent, step size, Polyak’s Momentum (a.k.a. the
heavy-ball method) and some convergence guarantees on quadratic objectives.

f(x) =
1

2
xTHx, where H < 0 positive semi-definite and Dom(f) = {x : ‖x‖2 ≤ 1} (1)

Here, we assume a bounded domain, which implies the Lipschitz property. That is, the hessian has no eigenvalue less
than 0. For differentiable functions, the norm of gradient descent does not exceed L.

• H is positive semi-definite =⇒ λ1 ≥ λ2 ≥ . . . ≥ λn > 0 =⇒ f is λn-strongly convex

• ∇f(x) = Hx =⇒ ‖∇f(x)‖2 ≤ ‖H‖2 ‖x‖2 ≤ λ1 = L =⇒ f is λ1-lipschitz
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The notion of strong convexity is different from that of strict convexity.

• Strict convexity: @λ s.t. ∇2f(x) < λI,∀x (typically studied in unbounded domains)

• Strong convexity: ∃λ ≥ 0 s.t. ∇2f(x) < λI,∀x ∈ Dom(f)

2 Optimal learning rate for standard Gradient Descent
In this section, we give an intuition behind the optimal choice of learning rate for G.D. by using a quadratic example.

α =
2

β + λ
(2)

Recall the update rule for standard gradient descent.

xt+1 = xt − α∇f(xt) (3)

We have |xt − x∗| = |1− α||x0|.

Here, we want to minimize the maximum of the learning rates along each dimension (max{|1−λ1α|, |1−λnα|}). If
one rate is strictly greater than the other, we want to minimize this rate, since it dominates the other asymptotically.

The shaded section to the upper right is known as ”divergence”. The optimal choice of learning rate is where the two
rates intersect (which in the following example is 2

3 ). When α is too big, we start to bounce upward. We will now
proceed to show the optimal step size for an example quadratic function of our choice.

Example
• f(x) = 1

2x
2

• g(x) = x2

Consider the following three-dimensional quadratic function:

f(x, y) =
1

2
x2 + y2 = f(z) =

1

2
zTHz, where H =

(
1 0
0 2

)
(4)
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Where z = (x, y). Taking the gradient, we get
[
x
2y

]
. The recurrence then becomes:

∇f(x, y) =
[
x
2y

]
=⇒

[
xt+1

yt+1

]
=

[
xt
yt

]
− α

[
xt
2yt

]
(5)

This now breaks up into the following scalar recurrences:

xt+1 = (1− α)xt
yt+1 = (1− 2α)yt

(6)

Starting with the L2 norm squared, we proceed to solve for α,

=⇒
∥∥∥∥[xt+1

yt+1

]∥∥∥∥2
2

= ‖xt+1‖22 + ‖yt+1‖22 = (1− α)2(t+1)|x0|2 + (1− 2α)2(t+1)|y0|2 (7)

Since α is always positive by equation 2, we have the following inequality:

1− α > 1− 2α (8)

Now, from the previous inequality and system of equations:

Equation 8 ∧ equation 7 =⇒ O

(∥∥∥∥[xt+1

yt+1

]∥∥∥∥2
2

)
= O

(
(1− α)2(t+1)

)
(9)

=⇒ α =
2

λ1 + λn
=

2

1 + 2
=

2

3
(10)

Over the range of curvatures present, we would like to have a uniform rate of convergence along all directions. That
is, we do not want our gradient descent to converge to the optimum in any one direction more quickly than others.

We would like to find the inverse of the Hessian. If we could do so, we would converge to the global optimum (in
one step!) for quadratic functions. Due to the complexity of this task, we must approximate. One way to do so is
calculating the inverse average of the eigenvalues. The following figure depicts the inverse average of the eigenvalues.
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3 Polyak’s momentum
Polyak’s momentum introduces a ”momentum” term µ|xt − xt−1|, inspired by physics. If we imagine the current
iterate as a object with mass, then our gradient descent update should be proportional to the previous step size. The
full momentum update is:

xt+1 = xt − α∇f(xt) + µ|xt − xt−1| (11)

Where µ ∈ [0, 1). Using an augmented state space, we get the linear recurrence:[
xt+1

xt

]
=

[
1− αhi + µ −µ

1 0

] [
xt(i)
xt−1(i)

]
(12)

xt+1 = xt − αHxt + µ(xt − xt−1) (13)

Without loss of generality, x∗ = 0. f(x) = 1
2x

THx. If we unroll the recursion above, we end up with an exponentially
weighted average of past gradients.

xt+1 = xt − αHxt + µ(xt − xt−1) = xt+1(i) = xt(i)− αhixt(i) + µ(xt(i)− xt−1(i)) (14)

We could try to use the determinant to solve this set of linear equations. But for simplicity’s sake, we will focus on
the asymptotic behavior. In this case, the spectral radius will tell us the actual rate. To get this, we use the following
linear operator: ∥∥∥∥[xt+1

xt

]∥∥∥∥
2

=

∥∥∥∥At−1
[
x1(i)
x0(i)

]∥∥∥∥
2

(15)

Where A is taken from 12.

A =

[
1− αhi + µ −µ

1 0

]
(16)

By the induced norm we have:

∥∥At−1∥∥∥∥∥∥[x1(i)x0(i)

]∥∥∥∥
2

≤
∥∥At−1∥∥∥∥∥∥[x1(i)x0(i)

]∥∥∥∥
2

(17)

With lemma 11 from [4] there must exist a matrix norm such that:∥∥At−1∥∥ ≤ (ρ(A) + ε)t−1 (18)

with ρ(A) = max {|λ1|, |λ2|} (spectral radius, or the max of the two eigenvalue magnitudes). Therefore,

∥∥At−1∥∥∥∥∥∥[x1(i)x0(i)

]∥∥∥∥
2

≤ (ρ(A) + ε)t−1
∥∥∥∥[x1(i)x0(i)

]∥∥∥∥
2

(19)

Assumption 1. Assume that, ∀i, (1−√µ)2 ≤ αhi ≤ (1 +
√
µ)2. This implies:

ρ(A) =
√
µ

As long as the previous assumption holds, the convergence rate of Polyak’s Momentum does not depend on the step
size or curvature, only on the momentum term µ|xt − xt−1|. There is a large range of step sizes and curvatures over
which the convergence rate of Polyak’s Momentum stays constant.

Lemma 2 (Result). µ∗ =
(√

κ−1√
κ+1

)2
rate =

(√
κ−1√
κ+1

)2
cf. Gradient Descent:

(
κ−1
κ+1

)
≤ e−1

κ
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