
IFT 6085 - Lecture 4
Black-box Models and Lower bounds

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribe(s): Sai Krishna, Krishna Murthy Instructor: Ioannis Mitliagkas

1 Summary
In the previous lecture(s) we looked at some properties of convex functions, namely strong convexity, β-smoothness.
We also derived upper bounds for rates of convergence when gradient descent is used in the minimization of λ-
strongly convex and β-smooth functions. Note that these bounds do not — in general — hold for maximization of
convex functions.
In this lecture we will conclude our discussion on upper bounds and summarize these bounds for various assumptions
on the nature of the convex objective function. We shall then derive a lower bound for the convergence rate of gradient
descent on convex objectives that are β-smooth α-strongly convex.

2 Convergence rate
Properties of the Convex Objective Function Upper bound on Convergence Rate of Gradient Descent

L-Lipschitz D1L√
T

β-smooth βD2
1

T

λ-strongly convex and L-Lipschitz L2

λT

λ-strongly convex and β-smooth βD1 exp−
(
4T
κ

)
In the above table, D1 denotes the initial suboptimality, i.e., the L2 distance of the initial guess x1 from the optimal
point x∗. So, D1 = ‖x1 − x∗‖22. As one would expect, assuming smoothness leads to a faster convergence rate
compared to the case when the objective is assumed to only be L-Lipschitz. When we assume furthermore, for in-
stance strong convexity and smoothness, we get exponential convergence (some authors also refer to this as linear
convergence, due to the fact that a semi-logarithmic plot of the convergence rate across gradient descent iterations is
reminiscent of a straight line).

One seemingly weird observation from the above table is that, when you consider a convex objective that is strongly
convex and L-Lipschitz, but not necessarily smooth, the upper bound on the rate of convergence is independent of the
initial guess. To understand this, we could first look at what the two assumptions mean. A λ-strongly convex function
is always lower bounded by a quadratic of curvature λ. In addition to this, when we assume that it is L-Lipschitz,
the gradients cannot exceed L. Hence, we’re interested only in functions whose curvature is upper bounded by L

λ .
This usually happens when we restrict ourselves to a particular subset of the domain of the convex objective where
these properties hold. And when these hold, we find that the initialization does not play a role in determining the
convergence rate. For more details, see theorem 3.9 from [1].

3 Black Box Model
A black box model assumes that we do not know the objective function f being minimized. Information about the
objective function can only be accessed by querying an oracle. The oracle serves as a bridge between the (unknown)

1

IFT 6085 - Theoretical principles for deep learning Lecture 4: January 18, 2018

objective function and the optimizer. At any given step, the optimizer queries the oracle with a guess x, and the ora-
cle responds with information about the function around x (eg. value, gradient, Hessian, ...). This model is suitable
when we want to lower bound the asymptotic complexity of minimizing f regardless of what algorithm we use. The
complexity can be estimated as the number of queries that can be made to the oracle until we find an ε-approximate
minimum for the convex function f .

Specifically, under the black box model for first-order methods, we consider a sequence of iterates x1, x2, x3, ... and
a sequence of gradients g1, g2, g3, Further, in our analysis, we assume that the initial guess x1 is always the zero
vector (x1 = 0). The optimizer updates the variable x (interchangeably referred to as the parameter vector) using an
update rule that satisfies the following criterion.

xt+1 ∈ span (g1, g2, ..., gt)

Here t is an index into the number of steps the optimizer is run for. The assumption that x1 = 0 is without loss of
generality. The above model can easily be tweaked to hold for arbitrary initializations, but in that case, expressions for
bounds become tedious. We only make this assumption for algebraic simplicity, because we are interested in bounds
on asymptotic rates 1.

4 A Taxonomy of Optimization Methods
Here’s a brief taxonomy on optimization methods, based on the nature of information about the function that the
methods require.

4.1 Zeroth order methods
These methods only require the value of function f at the current guess x. They do not access any other higher-level
information (gradients, for example, are examples of such higher-level information). Bisection method, genetic algo-
rithms, simulated annealing and Metropolis method are a few techniques that can fall under this category.

4.2 First order methods
These methods can inquire the value of the function f and its first derivative (gradient or Jacobian) of the function∇f
at the current guess x. These methods are widely used for optimization in machine learning problems. Some of the
methods include gradient descent, Nesterov’s accelerated gradient methods, Polyak’s momentum (some of which will
be covered in subsequent lectures).

4.3 Second order methods
These methods require the value of the function f , its first derivative (gradient or Jacobian)∇f , and its second deriva-
tive (Hessian) ∇2f at the current guess x. Since these methods use information about the local curvature (which is
encoded in the Hessian), they converge in a smaller number of iterations. However, each iteration is computationally
intensive, as it typically involves an inversion of the Hessian. Another characteristic of these methods is the self-tuning
property. The step size (learning rate) is determined implicitly from the curvature information and need not be tuned
as a hyperparameter. Newton’s method is a very popular example of a second order method 2.

1If the initial guess was not the zero vector, but xinit, the update rule criterion must be modified to xt+1 ∈ span (xinit, g1, g2, ..., gt)
2Another class of techniques, sometimes referred to as Quasi-Newton methods is frequently used by the machine learning community. These

techniques attempt to infer (approximate) second order information by using only first order information. BFGS and L-BFGS are popular Quasi-
Newton methods

2

IFT 6085 - Theoretical principles for deep learning Lecture 4: January 18, 2018

5 Adaptive Methods and Conjugate Gradients
The methods we mentioned until this point assume that all dimensions of a vector-valued variable (or sometimes all
variables in the objective function) have a common set of hyperparameters. Adaptive methods relax this assumption
and allow for every variable (or sometimes every dimension of a vector) to have its own set of hyperparameters (learn-
ing rate, momentum, etc). Some popular methods under this paradigm that are used in training deep neural networks
are AdaGrad and ADAM.

Conjugate gradient descent is a technique that we will not deal with in this course. But, to summarize what it does,
it attains the minimum for a quadratic (exact minimum, no suboptimality) in exactly d iterations, where d is the
dimensionality of the quadratic function. Exploiting conjugate gradients in deep network training is still an active area
of research.

6 Lower bounds
Up until now, we have looked only at upper bounds on convergence rates for convex objectives that are optimized
using gradient descent solvers. We will now derive a lower bound for the special case when our objective function is
smooth and strongly-convex.

6.1 Why are lower bounds useful?
Lower bounds are very useful because they tell you what’s the best you can do using a given optimizer. If not for lower
bounds, a lot of research energy would be spent in designing better optimizers when you can’t actually do any better.
Caveats here are that, existence of a lower bound does not imply that an optimizer exists that attains the lower bound
on convergence rate. Also, lower bounds do not also tell you about how tight they are, given that they are mostly
proved by contrived examples.

6.2 Lower bounds for smooth and strongly convex objectives
Now, we proceed to derive a lower bound for an objective function, which, in addition to being convex, is also α-
strongly convex and β-smooth. Before we proceed, we outline some notation that will be used in the proof.

The condition number for a matrix will be denoted by κ. It is the ratio of the largest singluar value of the matrix to
its smallest singluar value. If the condition number of a matrix is infinity, then the corresponding linear system is
termed singular. If the condition number is too large (but not infinity), then the corresponding linear system is termed
ill-conditioned (or poorly conditioned).

And from the black box model we defined in Section 3, we also have the initial guess x1 = 0. Also recall that
xt+1 ∈ span (g1, g2,gt), where gi is the gradient at the ith time step.

Theorem 1. (Theorem 3.15 from [1]) (κ > 1) There exists a β-smooth and α-strongly convex function f : l2 7→ R
with condition number κ = β

α such that for any t ≥ 1 and any black box procedure (see Section 3), the following
lower bound holds.

f(xt)− f(x∗) ≥
α

2

(√
κ− 1√
κ+ 1

)2(t−1)

||x1 − x∗||2 (1)

for large values of κ, (√
κ− 1√
κ+ 1

)2(t−1)

≈ exp

(
−4(t− 1)√

κ

)
(2)

Proof. As is typical of lower bound proofs, we prove this theorem by constructing an example. The example function
we construct is an `2 function. Informally speaking, `2 functions are vectors with infinitely many coordinates that are

3

IFT 6085 - Theoretical principles for deep learning Lecture 4: January 18, 2018

also square summable. Formally,

`2 = {x = (x(n)), n ∈ N,
∞∑
i=1

x(i)2 < +∞}

We define an operator that assumes the form of a tridiagonal matrix. Let

A =

2 −1 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2 −1 0
...

... 0 −1 2 −1 0
...

...
.

...

Using the operator defined above, we can define the following quadratic function.

f(x) =
α(k − 1)

8
(〈Ax, x〉 − 2〈e1, x〉) +

α

2
‖x‖2

Here, 〈., .〉 denotes the vector inner-product (also called the dot product) and e1 denotes the first vector of the canonical
basis, i.e.,

e1 = [1, 0, 0, . . .]
T

Since A is symmetric (as A is the Hessian of a quadratic function f , and Hessians, by definition, are symmetric),

〈Ax, x〉 = xTATx = xTAx

Also note that f is α-strongly convex (the α
2 ‖x‖

2 term ensures that) and β-smooth. β-smoothness arises from the
property that the eigenvalues of A are bounded to be in the range [0, 4]. We now compute the gradient of f .

∇f(x) = α(k − 1)

4
(Ax− 2e1) + αx

Recall that, under the black box model we assumed that the starting point for our gradient descent routine will be
x1 = 0. Plugging that into the expression above, we get

∇f(x)x=x1
= −α(k − 1)

4
e1 =

−α(k−1)

4
0
0
...

Using this expression, it is easy to show — by mathematical induction — that if xt−1 has non-zero entries upto element
at index t−1, then xt will have non-zero entries upto index t. The way the Hessian A is designed, the non-zero values
propagate linearly across the dimensions, one dimension per each step of the gradient descent routine.
That is, xt(i) = 0 ∀i ≥ t. Let’s now consider the norm

‖xt − x∗‖2 =

∞∑
i=1

(xt(i)− x∗(i))2

=

t−1∑
i=1

(xt(i)− x∗(i))2 +
∞∑
i=t

(xt(i)− x∗(i))2 (separating the non-zero entries)

= some positive value +
∞∑
i=t

(xt(i)− x∗(i))2

≥
∞∑
i=t

(xt(i)− x∗(i))2 (the first term above was positive)

=

∞∑
i=t

(x∗(i))
2 (all terms are zeros, beginning from term t)

(3)

4

IFT 6085 - Theoretical principles for deep learning Lecture 4: January 18, 2018

Of course, as we keep running gradient descent, ‖xt‖ keeps getting smaller and smaller (if the learning rate is appro-
priately specified). Strong convexity gives us

f(xt)− f(x∗) ≥
α

2
‖xt − x∗‖2

≥ α

2

∞∑
i=t

(x∗(i))
2

(4)

If we differentiate f and set∇f to 0, we obtain an infinite linear system, of the following form.

1− 2
κ+ 1

κ− 1
x∗(1) + x∗(2) = 0,

x∗(k − 1)− 2
κ+ 1

κ− 1
x∗(k) + x∗(k + 1) = 0∀k ≥ 2.

(5)

The solution of the above system is given by

x∗(i) =

(√
κ− 1√
κ+ 1

)i
Now, we plug this into the above expression, which gives us

f(xt)− f(x∗) ≥
α

2
‖xt − x∗‖2

≥ α

2

∞∑
i=t

(x∗t (i))
2

=
α

2

∞∑
i=t

(√
κ− 1√
κ+ 1

)2i

=
α

2

(√
κ− 1√
κ+ 1

)2(t−1)

||x1 − x∗||2

(6)

This proves the theorem.

References
[1] S. Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and Trends in Machine Learning,

2014.

5

	Summary
	Convergence rate
	Black Box Model
	A Taxonomy of Optimization Methods
	Zeroth order methods
	First order methods
	Second order methods

	Adaptive Methods and Conjugate Gradients
	Lower bounds
	Why are lower bounds useful?
	Lower bounds for smooth and strongly convex objectives

