
IFT 6085 - Lecture 3
Gradient descent for smooth and for strongly convex functions

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes: Philippe Brouillard, Massimo and Lucas Caccia Instructor: Ioannis Mitliagkas

1 Summary
In the previous lecture we covered notions of convexity and gradient descent for Lipschitz functions.

In this lecture we will cover gradient descent for smooth and for strongly convex functions.

2 Gradient Descent for Lipschitz functions
(see [1] Section 3.1 for more details)

Before we start with new material, let us go back to the end of last class, where we proved Theorem 3.2. Let’s clarify
how to go from equations (9) to (10) (in the previous set of scribe notes).

From the first-order condition for convexity, you have

f(xk)− f(x∗) ≤ 〈∇f(xk), xk − x∗〉

Using the gradient update rule, we have xk+1 = xk − γ∇f(xk), or equivalently∇f(xk) = 1
γ (xk − xk+1)

Giving us

f(xk)− f(x∗) ≤ 〈
1

γ
(xk − xk+1), xk − x∗〉

From the identity

||a− b||22 = ||a||22 + ||b||22 − 2aᵀb

aᵀb =
1

2
(−||a− b||22 + ||a||22 + ||b||22)

Setting a = (xk − xk+1) and b = xk − x∗, we get

f(xk)− f(x∗) ≤
1

2γ
(−||xk − xk+1 − (xk − x∗)||22 + ||xk − xk+1||22 + ||xk − x∗||22)

Replacing the second term on the R.H.S by the gradient and cleaning up the first term we get

f(xk)− f(x∗) ≤
1

2γ
(−||x∗ − xk+1||22 + ||γ∇f(xk)||22 + ||xk − x∗||22)

And we recover equation (10) from the last set of notes

f(xk)− f(x∗) ≤
1

2γ
(||xk − x∗||22 − ||xk+1 − x∗||22) +

γ

2
||∇f(xk)||22
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3 Gradient descent for smooth functions
(see [1] Section 3.2 for more details)

Definition 1 (β-smoothness). We say that a continously differentiable function f is β-smooth if the gradient ∇f is
β-Lipschitz, that is

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖

Note that this is equivalent to the eigenvalues of the Hessians being smaller than β. (remember that f ′ needs to be
differentiable in order to compute the gradient)

Up to now, we studied gradient descent’s convergence rate for Lipschitz functions. We will now see that smooth
functions (a stronger condition) attains much faster convergence.

3.1 Theorem 3.3
Theorem 2. Let f be convex and β-smooth on Rn. Then the gradient descent with γ = 1/β satisfies

f(xk)− f(x∗) ≤
2β‖x1 − x∗‖2

k − 1

To prove this Theorem, we introduce two Lemmas:

Lemma 3. Let f be a β-smooth on Rn. Then for any x, y ∈ Rn, one has

|f(x)− f(y)−∇f(y)ᵀ(x− y)| ≤ β

2
‖x− y‖2

See [1] Lemma 3.4 for proof.

Lemma 4. Let f be such that 0 ≤ f(x)− f(y)−∇f(y)ᵀ(x− y) ≤ β

2
‖x− y‖. Then for any x, y ∈ Rn, one has

f(x)− f(y) ≤ ∇f(x)ᵀ(x− y)− 1

2β
‖∇f(x)−∇f(y)‖2

See [1] Lemma 3.5 for proof.

We can now prove Theorem 2

Proof. See [1] page 268

4 Strong convexity

Definition 5 (α-strong convexity). We say that f is α-strongly convex if it satisfies the following subgradient inequal-
ity:

f(x)− f(y) ≤ ∇f(x)ᵀ(x− y)− α

2
‖x− y‖2

The strong convexity parameter α is a measure of the curvature of f .

4.1 Theorem 3.9

Theorem 6. Let f be α-strongly convex and L-Lipschitz. Then the projected subgradient descent with γk =
2

α(k + 1)
satisfies

f

(
T∑
k=1

2k

T (T − 1)
xk

)
− f(x∗) ≤ 2L2

α(k + 1)

2



IFT 6085 - Theoretical principles for deep learning Lecture 3: January 17, 2018

Proof. See [1] page 277

4.2 Theorem 3.12
Theorem 7. For f a λ-strongly convex and β-smooth function, gradient descent with γ = 2

λ+β satisfies:

f(xk+1)− f(x∗) ≤
β

2
exp

(
− 4k

κ+ 1

)
‖x1 − x∗‖2

where κ , β
λ is the condition number.

In order to prove the theorem, we will use the following lemma:

Lemma 8 (Coercivity of the gradient). Let f be β-smooth and a-strongly. Then for all x and y, we have:

〈∇f(x)−∇f(y), x− y〉 ≥ λβ

λ+ β
‖x− y‖2 + 1

λ+ β
‖∇f(x)−∇f(y)‖2

See [1] Lemma 3.11 for proof.

Proof. (Theorem 7) First, let’s define the distance between the coordinate at the iteration k and the optimal point as:

Dk , ‖xk − x∗‖

Then,
D2
k+1 = ‖xk+1 − x∗‖2

By replacing xk+1 by its definition xk − γ∇f(xk), we get:

D2
k+1 = ‖xk − γ∇f(xk)− x∗‖2

By expanding the square, we get:

D2
k+1 = ‖xk − x∗‖2 − 2γ〈∇f(xk), xk − x∗〉+ γ2‖∇f(xk)‖2

By doing a slight modification to the second term, we can apply the lemma of coercivity of the gradient. Since
∇f(x∗) = 0 this equality holds:

〈∇f(xk), xk − x∗〉 = 〈∇f(xk)−∇f(x∗), xk − x∗〉

And by applying the lemma of coercivity of the gradient, we get an upper bound:

〈∇f(xk)−∇f(x∗), xk − x∗〉 ≥
λβ

λ+ β
D2
k +

1

λ+ β
‖∇f(xk)−∇f(x∗)‖2

By replacing the second term by the upper bound we just found, we get:

D2
k+1 ≤ D2

k − 2γ

(
λβ

λ+ β
D2
k +

1

λ+ β
‖∇f(xk)‖2

)
+ γ2‖∇f(xk)‖2

We can rearrange the terms and add −∇f(x∗) again inside the norm terms:

D2
k+1 ≤

(
1− 2γλβ

λ+ β

)
D2
k +

(
−2γ
λ+ β

+ γ2
)
‖∇f(xk)−∇f(x∗)‖2

We can change the norm term by using the fact that f is β-smooth:

D2
k+1 ≤

(
1− 2γλβ

λ+ β

)
D2
k +

(
−2γ
λ+ β

+ γ2
)
β2D2

k
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Let γ = 2
λ+β , then:

D2
k+1 ≤

(
1− 4λβ

(λ+ β)2

)
D2
k

By unrolling the recursion and since
(
κ−1
κ+1

)2
=
(
1− 4λβ

(λ+β)2

)
we get:

D2
k+1 ≤

(
κ− 1

κ+ 1

)2k

D2
1

Since exp(−x) ≥ 1− x for every x, we get:

D2
k+1 ≤ exp

(
− 4k

κ+ 1

)
D2

1

By β-smoothness we finally have:

f(xk+1)− f(x∗) ≤
β

2
exp

(
− 4k

κ+ 1

)
‖x1 − x∗‖2
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