IFT 6085 - Lecture 2
Basics of convex analysis and gradient descent

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes: Assya Trofimov, Mohammad Pezeshki, Reyhane Askari Instructor: Ioannis Mitliagkas

1 Summary

In this first lecture we cover some optimization basics with the following themes:
e Lipschitz continuity
e Some notions and definitions for convexity
e Smoothness and Strong Convexity
e Gradient Descent

Note: Most of this lecture has been adapted from [[L]].

2 Introduction

In this section we introduce the basic concepts of optimization.
The gradient descent algorithm is the workhorse of machine learning. It generally has two equivalent interpretations:

e downhill

e local minimization of a function

Definition 1 (Lipschitz continuity). A function f(x) is L-Lipschitz if

|f(2) = f(y)] < Lz —yl|

Intuitively, this is a measurement of how steep the function can get (Figure|[T).
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Figure 1: Lipschitz constant
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This also implies that the derivative of the function cannot exceed L.

Fz) = éﬂw
and
f/($> = lim M = lim M <L
vme EoY yoe |z =yl

As a consequence, L-Lipschitz implies that f’(x) is bounded by L

[f'(@)] < L

Lipschitz continuity can be seen as a refinement of continuity. Example:

1, otherwise

f(z) = {exp(—)\a:), ifx >0

Note that f(x) is L-lipschitz. As the A value increases, the closer the function gets to discontinuity (Figure|2).
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Figure 2: As X value increases, the function is closer to being discontinuous

3 Convexity

Let us first look at the definition of convexity for a set.

Definition 2. For a convex set X, for any two points x and y such that x,y € X, the line between them lies within the
set (Figure[3|A). That is:
V0 €[0,1] and z=0zx+ (1—0)y, then ze€X

When parameter 6 is equal to 1, we get  and when 6 is 0, we get y. In contrast, a non-convex set is a set where z may
lie outside of the set (Figure 3| B).

A B

Figure 3: A) Convex set and B) Non-convex set

Definition 3 (Convex Linear Combination). The sum 0z + (1 — 0)y is termed as convex linear combination.
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We can apply the convex definition to functions.
Definition 4 (Convex function). A function f(x) is convex if the following holds:
o The Domain(f) is convex.

e For any two members of the domain, the function value on a convex combination does not exceed the convex
combination of values.
Vz,y € Domain(f),6 € [0,1]

fOz+ (1—0)y) <Of(x)+(1—0)f(y)

Another way to express this would be to check the line segment connecting x and y (the chord). If the chord lies above
the function itself (Figure[d) the function is convex.

convex function

non-convex function

Figure 4: Example of convex and non-convex functions

Moreover, for differentiable or twice differentiable functions, it is possible to define convexity with the following first
and second order conditions for convexity.

Definition 5 (First order condition for convexity). f(x) is convex if and only if domain(f) is convex and the following
holds for Nz, y € domain(f)

fy) 2 fz) + V(@) (y - )

In other words, the function should be lower bounded by all its tangents.

In Figure 5] part of the non-convex function is below the tangent at point «. This is not the case for the convex function.
The convex function should therefore be lower-bounded by all the tangents at any point.

As areminder, the Hessian is a measure of curvature. It is the multivariate generalization for second derivative. Indeed,
for function f(z) = %xQ, the second derivative f”(x) = h, which corresponds to a measure of how quickly the shape
changes in the function. A multivariate quadratic can be written as f(x) = %xTH x, where H is the Hessian.
Curvature along the eigenvectors of the Hessian is given by the corresponding eigenvalues.
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Figure 5: Example of convex and non-convex function relative to the tangent at point =
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“ f(x)<2

Figure 6: Looking along the principle directions of the quadratic, it appears that along ¢; we reach higher values more
quickly. This means the curvature is higher along q; .

Changing the basis with ), we decompose the matrix and focus on the direction described by @ = [q1, ¢2, ..., d]-
Along the direction of g;, we see the curvature for h; (Figure @) Note that [hy, ha, ..., hyg] are sorted in order of
magnitude.

If the function is twice differentiable, another convexity definition applies.

Definition 6 (Second order condition for convexity). A twice differentiable function f is convex if and only if:
V2f(x) =0 where x € domain(f(z))

This also implies that the Hessian needs to be positive semi-definite, in other words, eigenvalues need to be non-
negative.

Note: All the definitions of convexity are equivalent when the right level of differentiability holds.

4 Smoothness and Strong Convexity
Definition 7 (Smoothness). A function f(x) is B-smooth if the following holds:
IVf(@) = VW < Bllz —yll where x,y € domain(f(x)). M

It is noted that S-smoothness of f(x) is equivalent to S-Lipschitz of V f(z). Smoothness constraint requires the
gradient of f(x) to not change rapidly.
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Definition 8 (Strong Convexity). A function f(z) is c-strongly convex if f(z) — &||x||? is convex.

If f(z) is a-strongly convex then the following hold:

V2f(z) = ol & V2f(x) —al > 0. )

It informally means that the curvature of f(x) is not very close to zero. For instance, in 1-D case, f(z) = %xQ is
h-strongly convex but not (h + €)-strongly convex. Figure [7|illustrates examples of two convex functions of which

only one is strongly convex.

\\_/ f(z)
f(@) =5 lll13
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Figure 7: (a) A convex function which is also strongly convex. (b) A convex function which is not strongly convex.

5 Gradient Descent

Gradient descent is an optimization algorithm based on the fact that a function f(z) decreases fastest in the direction
of the negative gradient of f(x) at a current point. Consequently, starting from a guess x( for a local minimum of
f(x) the sequence x¢, x1, ...,y € R? is generated using the following rule:

Tpy1 = Tk — YV f(2k), 3)

in which -y is called the step size or the learning rate. If f(x) is convex and -y decays at the right rate, it is guaranteed
that as ¢ — o0, x, — x*. The following holds for the optimal value zx:

*

x* = argmin  f(x). 4)
z€Domain(f(x))

Lemma 1. From L-Lipschitz constraint the following holds:

IV f(zi)l5 < L2. ®)

This lemma is used in the proof on the following theorem.

Theorem 1 (Gradient Descent Theory). Let f(x) be convex and L-lipschitz, if T is the total number of steps taken
and the learning rate is chosen as:

|lz1 — =2
— 6
/T 6)
Then the following holds:
T *
F2 %) - fa) < o2l ()
Ti= VT
Proof. By applying the Taylor expansion on f(z) at the point z, we have,
Fa) = @) < (Vi (@), — ) ®)
1 .
= <;(xk_xk+1)7xk_$ > ©)
1 X *
= 5 (llon =115 = s = 2*115) + IV FCw)lI (10)
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From Equation (10) and Lemmal[I] the following holds:

o o L . v
Fla) = $67) < o (llow =l = llowrn = a°I) + 57

By change of the variable ||z — x*||§ to Dy:

Flon) — f(2") < %[D% 3+ 11

Fz2) - Fz*) < %[Dg _py+2r?

Flr) — @) < %[D; D)+ 1o
< %[D%] v 1

d 1 THL?
gf(xk)ff(x)sgD% 5
1 & . 1, L2
:Tkzzlf(xk)_f(x)fﬁDl“‘T

From convexity of f(x) we know:

f0z+(1—0)y) <Of(z)+(1—0f(y)

So from Equation 14 and 15 the following holds:

1 & i 1 N2
F(7 20m) ~ ) < g Di 5

Thus, if we set v = llza—27]]

o We get:

Ly oy < e — 2L
f(TkE_jl b) — fa) < B
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