IFT 6085 - Lecture 2 Basics of convex analysis and gradient descent

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes: Assya Trofimov, Mohammad Pezeshki, Reyhane Askari
Instructor: Ioannis Mitliagkas

1 Summary

In this first lecture we cover some optimization basics with the following themes:

- Lipschitz continuity
- Some notions and definitions for convexity
- Smoothness and Strong Convexity
- Gradient Descent

Note: Most of this lecture has been adapted from [1].

2 Introduction

In this section we introduce the basic concepts of optimization.
The gradient descent algorithm is the workhorse of machine learning. It generally has two equivalent interpretations:

- downhill
- local minimization of a function

Definition 1 (Lipschitz continuity). A function $f(x)$ is L-Lipschitz if

$$
|f(x)-f(y)| \leq L\|x-y\|
$$

Intuitively, this is a measurement of how steep the function can get (Figure 1).

Figure 1: Lipschitz constant

This also implies that the derivative of the function cannot exceed L.

$$
f^{\prime}(x)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta}
$$

and

$$
f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y}=\lim _{y \rightarrow x} \frac{|f(x)-f(y)|}{|x-y|} \leq L
$$

As a consequence, L-Lipschitz implies that $f^{\prime}(x)$ is bounded by L

$$
\left|f^{\prime}(x)\right| \leq L
$$

Lipschitz continuity can be seen as a refinement of continuity. Example:

$$
f(x)= \begin{cases}\exp (-\lambda x), & \text { if } x>0 \\ 1, & \text { otherwise }\end{cases}
$$

Note that $\mathrm{f}(\mathrm{x})$ is L-lipschitz. As the λ value increases, the closer the function gets to discontinuity (Figure 2).

Figure 2: As λ value increases, the function is closer to being discontinuous

3 Convexity

Let us first look at the definition of convexity for a set.
Definition 2. For a convex set \boldsymbol{X}, for any two points x and y such that $x, y \in X$, the line between them lies within the set (Figure 3 A). That is:

$$
\forall \theta \in[0,1] \quad \text { and } \quad z=\theta x+(1-\theta) y, \quad \text { then } \quad z \in X
$$

When parameter θ is equal to 1 , we get x and when θ is 0 , we get y. In contrast, a non-convex set is a set where z may lie outside of the set (Figure 3B).

Figure 3: A) Convex set and B) Non-convex set

Definition 3 (Convex Linear Combination). The sum $\theta x+(1-\theta) y$ is termed as convex linear combination.

We can apply the convex definition to functions.
Definition 4 (Convex function). A function $f(x)$ is convex if the following holds:

- The Domain (f) is convex.
- For any two members of the domain, the function value on a convex combination does not exceed the convex combination of values.

$$
\begin{gathered}
\forall x, y \in \operatorname{Domain}(f), \theta \in[0,1] \\
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
\end{gathered}
$$

Another way to express this would be to check the line segment connecting x and y (the chord). If the chord lies above the function itself (Figure 4) the function is convex.

Figure 4: Example of convex and non-convex functions
Moreover, for differentiable or twice differentiable functions, it is possible to define convexity with the following first and second order conditions for convexity.

Definition 5 (First order condition for convexity). $f(x)$ is convex if and only if domain(f) is convex and the following holds for $\forall x, y \in \operatorname{domain}(f)$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

In other words, the function should be lower bounded by all its tangents.
In Figure [5, part of the non-convex function is below the tangent at point x. This is not the case for the convex function. The convex function should therefore be lower-bounded by all the tangents at any point.
As a reminder, the Hessian is a measure of curvature. It is the multivariate generalization for second derivative. Indeed, for function $f(x)=\frac{h}{2} x^{2}$, the second derivative $f^{\prime \prime}(x)=h$, which corresponds to a measure of how quickly the shape changes in the function. A multivariate quadratic can be written as $f(x)=\frac{1}{2} x^{T} H x$, where H is the Hessian.
Curvature along the eigenvectors of the Hessian is given by the corresponding eigenvalues.

$$
\begin{gathered}
H=Q \Lambda Q^{T} \\
\Lambda=\left[\begin{array}{llll}
h_{1} & & & \\
& h_{2} & & \\
& & \cdots & \\
& & & h_{d}
\end{array}\right]
\end{gathered}
$$

Figure 5: Example of convex and non-convex function relative to the tangent at point x

Figure 6: Looking along the principle directions of the quadratic, it appears that along q_{1} we reach higher values more quickly. This means the curvature is higher along q_{1}.

Changing the basis with Q, we decompose the matrix and focus on the direction described by $Q=\left[q_{1}, q_{2}, \ldots, q_{d}\right]$. Along the direction of q_{i}, we see the curvature for h_{i} (Figure 6). Note that $\left[h_{1}, h_{2}, \ldots, h_{d}\right]$ are sorted in order of magnitude.
If the function is twice differentiable, another convexity definition applies.
Definition 6 (Second order condition for convexity). A twice differentiable function fis convex if and only if:

$$
\nabla^{2} f(x) \succeq 0 \quad \text { where } \quad x \in \operatorname{domain}(f(x))
$$

This also implies that the Hessian needs to be positive semi-definite, in other words, eigenvalues need to be nonnegative.

Note: All the definitions of convexity are equivalent when the right level of differentiability holds.

4 Smoothness and Strong Convexity

Definition 7 (Smoothness). A function $f(x)$ is β-smooth if the following holds:

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\| \leq \beta\|x-y\| \quad \text { where } \quad x, y \in \operatorname{domain}(f(x)) \tag{1}
\end{equation*}
$$

It is noted that β-smoothness of $f(x)$ is equivalent to β-Lipschitz of $\nabla f(x)$. Smoothness constraint requires the gradient of $f(x)$ to not change rapidly.

Definition 8 (Strong Convexity). A function $f(x)$ is α-strongly convex if $f(x)-\frac{\alpha}{2}\|x\|^{2}$ is convex.
If $f(x)$ is α-strongly convex then the following hold:

$$
\begin{equation*}
\nabla^{2} f(x) \succeq \alpha I \Leftrightarrow \nabla^{2} f(x)-\alpha I \succeq 0 \tag{2}
\end{equation*}
$$

It informally means that the curvature of $\mathrm{f}(\mathrm{x})$ is not very close to zero. For instance, in 1-D case, $f(x)=\frac{h}{2} x^{2}$ is h-strongly convex but not $(h+\epsilon$)-strongly convex. Figure 7 illustrates examples of two convex functions of which only one is strongly convex.

Figure 7: (a) A convex function which is also strongly convex. (b) A convex function which is not strongly convex.

5 Gradient Descent

Gradient descent is an optimization algorithm based on the fact that a function $f(x)$ decreases fastest in the direction of the negative gradient of $f(x)$ at a current point. Consequently, starting from a guess x_{0} for a local minimum of $f(x)$ the sequence $x_{0}, x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ is generated using the following rule:

$$
\begin{equation*}
x_{k+1}=x_{k}-\gamma \nabla f\left(x_{k}\right), \tag{3}
\end{equation*}
$$

in which γ is called the step size or the learning rate. If $f(x)$ is convex and γ decays at the right rate, it is guaranteed that as $t \rightarrow \infty, x_{k} \rightarrow x^{*}$. The following holds for the optimal value $x *$:

$$
\begin{equation*}
x^{*}=\underset{x \in \operatorname{Domain}(f(x))}{\operatorname{argmin}} f(x) . \tag{4}
\end{equation*}
$$

Lemma 1. From L-Lipschitz constraint the following holds:

$$
\begin{equation*}
\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \leq L^{2} \tag{5}
\end{equation*}
$$

This lemma is used in the proof on the following theorem.
Theorem 1 (Gradient Descent Theory). Let $f(x)$ be convex and L-lipschitz, if T is the total number of steps taken and the learning rate is chosen as:

$$
\begin{equation*}
\gamma=\frac{\left\|x_{1}-x^{*}\right\|_{2}}{L \sqrt{T}} \tag{6}
\end{equation*}
$$

Then the following holds:

$$
\begin{equation*}
f\left(\frac{1}{T} \sum_{k=1}^{T} X_{k}\right)-f\left(x^{*}\right) \leq \frac{\left\|x_{1}-x^{*}\right\| L}{\sqrt{T}} \tag{7}
\end{equation*}
$$

Proof. By applying the Taylor expansion on $f(x)$ at the point x_{k}, we have,

$$
\begin{align*}
f\left(x_{k}\right)-f\left(x^{*}\right) & \leq\left\langle\nabla f\left(x_{k}\right), x_{k}-x^{*}\right\rangle \tag{8}\\
& =\left\langle\frac{1}{\gamma}\left(x_{k}-x_{k+1}\right), x_{k}-x^{*}\right\rangle \tag{9}\\
& =\frac{1}{2 \gamma}\left(\left\|x_{k}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right)+\gamma^{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \tag{10}
\end{align*}
$$

From Equation (10) and Lemma 1, the following holds:

$$
\begin{equation*}
f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \gamma}\left(\left\|x_{k}-x *\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right)+\frac{\gamma}{2} L^{2} \tag{11}
\end{equation*}
$$

By change of the variable $\left\|x_{k}-x^{*}\right\|_{2}^{2}$ to D_{k} :

$$
\begin{align*}
& f\left(x_{1}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \gamma}\left[D_{1}^{2}-D_{2}^{2}\right]+\frac{\gamma}{2} L^{2} \\
& f\left(x_{2}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \gamma}\left[D_{2}^{2}-D_{3}^{2}\right]+\frac{\gamma}{2} L^{2} \\
& \ldots \tag{12}\\
& f\left(x_{T}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \gamma}\left[D_{T}^{2}-D_{T+1}^{2}\right]+\frac{\gamma}{2} L^{2} \\
& \leq \frac{1}{2 \gamma}\left[D_{T}^{2}\right]+\frac{\gamma}{2} L^{2} .
\end{align*}
$$

Summing all the equations, most terms cancel. This is known as the telescoping sum. We get:

$$
\begin{align*}
\sum_{k=1}^{T}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right. & \leq \frac{1}{2 \gamma} D_{1}^{2}+\frac{T \gamma L^{2}}{2} \tag{13}\\
\Rightarrow \frac{1}{T} \sum_{k=1}^{T} f\left(x_{k}\right)-f\left(x^{*}\right) & \leq \frac{1}{2 \gamma T} D_{1}^{2}+\frac{\gamma L^{2}}{2} \tag{14}
\end{align*}
$$

From convexity of $f(x)$ we know:

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta f(y) \tag{15}
\end{equation*}
$$

So from Equation 14 and 15 the following holds:

$$
\begin{equation*}
f\left(\frac{1}{T} \sum_{k=1}^{T} x_{k}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \gamma T} D_{1}^{2}+\frac{\gamma L^{2}}{2} \tag{16}
\end{equation*}
$$

Thus, if we set $\gamma=\frac{\left\|x_{1}-x^{*}\right\|}{L \sqrt{T}}$, we get:

$$
\begin{equation*}
f\left(\frac{1}{T} \sum_{k=1}^{T} X_{k}\right)-f\left(x^{*}\right) \leq \frac{\left\|x_{1}-x^{*}\right\| L}{\sqrt{T}} \tag{17}
\end{equation*}
$$

References

[1] Bubeck, Sbastien. "Convex optimization: Algorithms and complexity." Foundations and Trends in Machine Learning 8.3-4 (2015): 231-357.

