
IFT 6085 - Lecture 2
Basics of convex analysis and gradient descent
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Scribes: Assya Trofimov, Mohammad Pezeshki, Reyhane Askari Instructor: Ioannis Mitliagkas

1 Summary
In this first lecture we cover some optimization basics with the following themes:

• Lipschitz continuity

• Some notions and definitions for convexity

• Smoothness and Strong Convexity

• Gradient Descent

Note: Most of this lecture has been adapted from [1].

2 Introduction
In this section we introduce the basic concepts of optimization.
The gradient descent algorithm is the workhorse of machine learning. It generally has two equivalent interpretations:

• downhill

• local minimization of a function

Definition 1 (Lipschitz continuity). A function f(x) is L-Lipschitz if

|f(x)− f(y)| ≤ L||x− y||

Intuitively, this is a measurement of how steep the function can get (Figure 1).

Figure 1: Lipschitz constant
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This also implies that the derivative of the function cannot exceed L.

f ′(x) = lim
δ→0

f(x+ δ)− f(x)

δ

and

f ′(x) = lim
y→x

f(x)− f(y)

x− y
= lim
y→x

|f(x)− f(y)|
|x− y|

≤ L

As a consequence, L-Lipschitz implies that f ′(x) is bounded by L

|f ′(x)| ≤ L

Lipschitz continuity can be seen as a refinement of continuity. Example:

f(x) =

{
exp(−λx), if x > 0

1, otherwise

Note that f(x) is L-lipschitz. As the λ value increases, the closer the function gets to discontinuity (Figure 2).

Figure 2: As λ value increases, the function is closer to being discontinuous

3 Convexity
Let us first look at the definition of convexity for a set.

Definition 2. For a convex set X, for any two points x and y such that x, y ∈ X , the line between them lies within the
set (Figure 3 A). That is:

∀θ ∈ [0, 1] and z = θx+ (1− θ)y, then z ∈ X

When parameter θ is equal to 1, we get x and when θ is 0, we get y. In contrast, a non-convex set is a set where z may
lie outside of the set (Figure 3 B).

Figure 3: A) Convex set and B) Non-convex set

Definition 3 (Convex Linear Combination). The sum θx+ (1− θ)y is termed as convex linear combination.
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We can apply the convex definition to functions.

Definition 4 (Convex function). A function f(x) is convex if the following holds:

• The Domain(f) is convex.

• For any two members of the domain, the function value on a convex combination does not exceed the convex
combination of values.

∀x, y ∈ Domain(f), θ ∈ [0, 1]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Another way to express this would be to check the line segment connecting x and y (the chord). If the chord lies above
the function itself (Figure 4) the function is convex.

Figure 4: Example of convex and non-convex functions

Moreover, for differentiable or twice differentiable functions, it is possible to define convexity with the following first
and second order conditions for convexity.

Definition 5 (First order condition for convexity). f(x) is convex if and only if domain(f) is convex and the following
holds for ∀x, y ∈ domain(f)

f(y) ≥ f(x) +∇f(x)T (y − x)

In other words, the function should be lower bounded by all its tangents.
In Figure 5, part of the non-convex function is below the tangent at point x. This is not the case for the convex function.
The convex function should therefore be lower-bounded by all the tangents at any point.
As a reminder, the Hessian is a measure of curvature. It is the multivariate generalization for second derivative. Indeed,
for function f(x) = h

2x
2, the second derivative f ′′(x) = h, which corresponds to a measure of how quickly the shape

changes in the function. A multivariate quadratic can be written as f(x) = 1
2x

THx, where H is the Hessian.
Curvature along the eigenvectors of the Hessian is given by the corresponding eigenvalues.

H = QΛQT

Λ =


h1

h2
...

hd


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Figure 5: Example of convex and non-convex function relative to the tangent at point x

Figure 6: Looking along the principle directions of the quadratic, it appears that along q1 we reach higher values more
quickly. This means the curvature is higher along q1.

Changing the basis with Q, we decompose the matrix and focus on the direction described by Q = [q1, q2, ..., qd].
Along the direction of qi, we see the curvature for hi (Figure 6). Note that [h1, h2, ..., hd] are sorted in order of
magnitude.
If the function is twice differentiable, another convexity definition applies.

Definition 6 (Second order condition for convexity). A twice differentiable function f is convex if and only if:

∇2f(x) � 0 where x ∈ domain(f(x))

This also implies that the Hessian needs to be positive semi-definite, in other words, eigenvalues need to be non-
negative.

Note: All the definitions of convexity are equivalent when the right level of differentiability holds.

4 Smoothness and Strong Convexity

Definition 7 (Smoothness). A function f(x) is β-smooth if the following holds:

||∇f(x)−∇f(y)|| ≤ β||x− y|| where x, y ∈ domain(f(x)). (1)

It is noted that β-smoothness of f(x) is equivalent to β-Lipschitz of ∇f(x). Smoothness constraint requires the
gradient of f(x) to not change rapidly.
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Definition 8 (Strong Convexity). A function f(x) is α-strongly convex if f(x)− α
2 ||x||

2 is convex.

If f(x) is α-strongly convex then the following hold:

∇2f(x) � αI ⇔ ∇2f(x)− αI � 0. (2)

It informally means that the curvature of f(x) is not very close to zero. For instance, in 1-D case, f(x) = h
2x

2 is
h-strongly convex but not (h + ε)-strongly convex. Figure 7 illustrates examples of two convex functions of which
only one is strongly convex.

Figure 7: (a) A convex function which is also strongly convex. (b) A convex function which is not strongly convex.

5 Gradient Descent
Gradient descent is an optimization algorithm based on the fact that a function f(x) decreases fastest in the direction
of the negative gradient of f(x) at a current point. Consequently, starting from a guess x0 for a local minimum of
f(x) the sequence x0, x1, ..., xt ∈ Rd is generated using the following rule:

xk+1 = xk − γ∇f(xk), (3)

in which γ is called the step size or the learning rate. If f(x) is convex and γ decays at the right rate, it is guaranteed
that as t→∞, xk → x∗. The following holds for the optimal value x∗:

x∗ = argmin
x∈Domain(f(x))

f(x). (4)

Lemma 1. From L-Lipschitz constraint the following holds:

||∇f(xk)||22 ≤ L2. (5)

This lemma is used in the proof on the following theorem.

Theorem 1 (Gradient Descent Theory). Let f(x) be convex and L-lipschitz, if T is the total number of steps taken
and the learning rate is chosen as:

γ =
||x1 − x∗||2

L
√
T

(6)

Then the following holds:

f
( 1

T

T∑
k=1

Xk

)
− f(x∗) ≤ ||x1 − x

∗||L√
T

, (7)

Proof. By applying the Taylor expansion on f(x) at the point xk, we have,

f(xk)− f(x∗) ≤
〈
∇f(xk), xk − x∗

〉
(8)

=
〈 1

γ
(xk − xk+1), xk − x∗

〉
(9)

=
1

2γ

(
||xk − x∗||22 − ||xk+1 − x∗||22

)
+ γ2||∇f(xk)||22 (10)
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From Equation (10) and Lemma 1, the following holds:

f(xk)− f(x∗) ≤ 1

2γ

(
||xk − x ∗ ||22 − ||xk+1 − x∗||22

)
+
γ

2
L2 (11)

By change of the variable ||xk − x∗||22 to Dk:

f(x1)− f(x∗) ≤ 1

2γ
[D2

1 −D2
2] +

γ

2
L2

f(x2)− f(x∗) ≤ 1

2γ
[D2

2 −D2
3] +

γ

2
L2

...

f(xT )− f(x∗) ≤ 1

2γ
[D2

T −D2
T+1] +

γ

2
L2

≤ 1

2γ
[D2

T ] +
γ

2
L2.

(12)

Summing all the equations, most terms cancel. This is known as the telescoping sum. We get:

T∑
k=1

(f(xk)− f(x∗) ≤ 1

2γ
D2

1 +
TγL2

2
(13)

⇒ 1

T

T∑
k=1

f(xk)− f(x∗) ≤ 1

2γT
D2

1 +
γL2

2
(14)

From convexity of f(x) we know:

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θf(y) (15)

So from Equation 14 and 15 the following holds:

f
( 1

T

T∑
k=1

xk

)
− f(x∗) ≤ 1

2γT
D2

1 +
γL2

2
(16)

Thus, if we set γ = ||x1−x∗||
L
√
T

, we get:

f
( 1

T

T∑
k=1

Xk

)
− f(x∗) ≤ ||x1 − x

∗||L√
T

. (17)
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