
IFT 6085 - Lecture 15
Variance Reduction Methods for Stochastic Optimization

Scribe(s): Aristide Baratin, Gabriel Huang Instructor: Ioannis Mitliagkas

1 Summary

In the previous lecture we, discussed aspects of the training dynamics of GANs. We have seen in particular that, in this
setting, the convergence rate is dictated by the largest (absolute) eigenvalue, and that maintaining small eigenvalues
requires using a small learning rate. One way to allow larger learning rate is to add a gradient penalty.

In this lecture we introduce variance reduced methods, which give yet another way to stabilize training with larger
learning rates. These methods attempt at combining the best properties of both stochastic gradient descent (SGD) and
(full batch) gradient descent (GD).

2 SGD versus GD

Stochastic gradient methods are particularly well-suited for optimization problems of the form

min

x

f(x) =
1

n

X

i

f
i

(x)

in situations where the number n of data points is very large. While the iterations of (full batch) gradient descent take
the form

x
k+1 = x

k

� �r
x

f(x),

the iterations SGD use (cheap) unbiased estimates of the full gradientr
x

f(x).

Definition 1 (SGD). SGD iterations typically take the form

x
k+1 = x

k

� �r
x

f
sk(x)

wherer
x

f
sk(x) is an unbiased estimate of the full gradientr

x

f(x) obtained by sampling uniformly a random index

s
k

2 {1, .., n} ; and � is the step size.

The main advantage of SGD over GD is a gain of iteration cost by a factor 1/n. However the effect of noisy gradient
estimates requires decreasing step-sizes, which slows down the convergence.

Theorem 2 (Convergence rates). Under the assumption that the objective is strongly convex,

• GD converges in O(⇢T ) for some ⇢ 2 (0, 1) (linear convergence), with an iteration cost in O(n)

• SGD converges in O(1/T ) (sublinear convergence), with an iteration cost in O(1)

where T denotes the number of iterations.

Several methods have been recently designed [7, 3, 5] to reduce the variance of the gradient estimates and accelerate
convergence of SGD. The main idea is to find better search directions by storing and re-using gradient estimates of
previous iterations. These methods speed up convergence from sublinear to linear for strongly convex problems, i.e
make SGD reach the convergence rate of GD (while maintaining cheap iteration cost).
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3 Background

We first recall some basic notations and definitions.

Definition 3 (Strong convexity). . The objective function f : Rd ! R is �-strongly convex if

hrf(x)�rf(y), x� yi � �||x� y||2

for all (x, y) 2 Rd ⇥ Rd

.

Definition 4 (Smoothness). . The objective function f : Rd ! R is �-smooth if

||rf(x)�rf(y)||  �||x� y||

for all (x, y) 2 Rd ⇥ Rd

.

Definition 5 (Bounding the second moment). . We say that the gradient estimaterf
s

(x) has bounded second moment

if there exists M > 0 such that

E
s

||rf
s

(x)||2 M2

for all x 2 Rd

.

4 Proof of Theorem 2

In this section we give proofs of the convergence rates of GD and SGD stated in Theorem 2. We assume that the
objective function is �-strongly convex and �-smooth.

4.1 Convergence rate of GD

In what follow we denote by D
k

the (square) distance to the optimum at iteration k:

D
k

= ||x
k

� x⇤||2

To establish the linear convergence rate, the strategy is to find ⇢ 2 (0, 1) such that D
k+1  ⇢D

k

for all k 2 N.
Iterating this inequality T times would then give D

T

 ⇢TD0, hence a convergence rate in O(⇢T ).

We have that

D
k+1 = ||x

k+1 � x⇤||2

= ||x
k

� �rf(x
k

)� x⇤||2

= ||x
k

� x⇤||2 � 2�hx
k

� x⇤,rf(x
k

)i+ �2||rf(x
k

)||2

where the second line used the expression of the GD iteration. Now, using �-strong convexity to bound the second
termm, we obtain:

D
k+1  (1� 2��)D

k

+ �2||rf(x
k

)||2

= (1� 2��)D
k

+ �2||rf(x
k

)�rf(x⇤
)||2

where the second line simply introduced the term rf(x⇤
), which is zero since the gradient vanishes at the optimum.

Finally, �-smoothness allows us to bound the second term of the right hand side by �2�2D
k

, so we conclude

D
k+1  ⇢D

k

with ⇢ = 1� 2��+ �2�2

This guarantees a linear convergence rate as long as the step size satisfies �  2�/�2.
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4.2 The case of SGD

How to adapt the proof for SGD? We can try to reproduce the above inequalities in expectation over the choice of
index samples s

k

. Note that we could also instead prove that convergence bounds hold with high-probability.

The first three equalities of the previous proof, as well �-strong convexity inequality, are preserved through expecta-
tions, so that

E[D
k+1]  (1� 2��)E[D

k

] + �2E||rf
sk(xk

)||2

However we cannot go further and directly write:

E[D
k+1]  (1� 2��)E[D

k

] + �2E||rf
sk(xk

)�rf
sk(x

⇤
)||2

because the stochastic gradientrf
sk(x

⇤
) is generally not zero at the optimum.

Instead, we can add and subtract the term:

E[D
k+1]  (1� 2��)E[D

k

] + �2E||rf
sk(xk

)�rf
sk(x

⇤
) +rf

sk(x
⇤
)||2

Now we use the identity ||a+ b||2  2||a||2 + 2||b||2 and get:

E[D
k+1]  (1� 2��)E[D

k

] + 2�2E||rf
sk(xk

)�rf
sk(x

⇤
)||2 + 2E||rf

sk(x
⇤
)||2

Finally by �-smoothness we obtain:

E[D
k+1]  (1� 2��+ 2�2�2

)E[D
k

] + 2�2E||rf
sk(x

⇤
)�rf(x⇤

)||2 (⇤)
The last term above is the noise ball (due to the gradient at optimum having nonzero variance). At that point, to
continue and reach convergence, we need to reduce learning rate – which considerably slows down the convergence.

One solution to this problem is to rely on variance reduction methods.

5 Variance reduction methods

The goal of variance reduction methods is define unbiased updates:

x
k+1 = x

k

� �v
k

(x
k

)

with less variance, i.e., V ar(v
k

) is small.

The idea is to introduce an extra-term in the SGD updates, which has zero mean but will lower the variance of the
update:

v
k

(x
k

) = rf
sk(xk

)�rf
sk(y) +rf(y)| {z }

new term

where y is a generic point.

Let us compute the variance of v
k

:

E
sk ||vk||2 = E||rf

sk(x)�rfsk(y) +rf(y)||2

= E||rf
sk(x)�rfsk(y) +rf(y) +rfsk(x⇤

)�rf
sk(x

⇤
)||2

 2E||rf
sk(x)�rfsk(x⇤

)||2 + 2E||rf
sk(y)�rfsk(x⇤

)| {z }
E[[...]]=rf(y)

�rf(y)||2

Using the inequality E||X �EX||2  E||X||2, we obtain:

E
s

||v
k

||2  2E||rf
sk(x)�rfsk(x⇤

)||2 + 2E||rf
s

(y)�rf
s

(x⇤
)||2

We can now use �-smoothness to bound the two terms of the sum, so that

E
sk ||vk||2  2�2E[D

k

] + 2�2E||y � x⇤||2
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Example Let y = x
s1 . In this case we get

E
s

||v
k

||2  2�2E[D
k

] + 2�2ED1

Redoing the analysis of Section 4.2 by replacing the gradients with the updates v
k

, the last equation (⇤) becomes:

E[D
k+1]  (1� 2��+ 2�2�2

)E[D
k

] + 2�2E||v
k

||2

 (1� 2��+ 2�2�2
)ED

k

+ 2�2
2�2ED

k

+ 2�2
2�2ED1

 (1� 2��+ 6�2�2
)ED

k

+ 4�2�2ED1

Let ⇢ = 1 � 2�� + 6�2�2. We have that ⇢ 2 (0, 1) whenever �  �/�2. Applying the previous inequality T times,
we obtain after T steps,

ED
T+1  (⇢T + T4�2�2

)ED1

This allows to answer guarantees questions such as: the number of updates needed and how to adjust the learning rate
so that, for instance

ED
T+1  0.5ED1

We can take � = O(�/�2
) , T = O(�2/�2

) = O(2
) where  is the condition number. Then to have

ED
ET

 0.5EED1

we can take ???

The idea of Stochastic Variance Reduced Gradient (SVRG) [5] is thus to compute the full gradient rf(ỹ) every T
iterations (i.e at y = x

k

for k = 1, T +1, 2T +1, · and use it (in an inner loop) to correct the usual stochastic gradient
estimate with a control variate rf

sk(y)�rf(y). The algorithm is as follows.

Algorithm 1 SVRG
Input x1

y  x1, k  1

For epochs e = 1 · · ·E:
Compute full gradient g  rf(y)
For k = 1 · · ·T :

sample s
k

⇠ Uniform{1, · · ·n}
Compute SVRG updates: x

k

 x
k

� �(rf
sk(xk

)�rf
sk(y) + g)

y  x
k

Remark: On non-convex functions, the estimate might be outdated.
There were several extensions to SVRG; [4] proposes to compute the gradient of growing-batches in the early iteration
instead of computing the full batch gradient, [6] extends the methods to mini-batch, [2] improves SVRG by using
increasing epoch size, finally closest to our work [1] proposed to use adaptive learning rate with SVRG for non-convex
optimization.

6 Comparisons

Table 1 below compares full batch, stochastic and variance-reduced methods in terms of cost and speed. We assume
the unit cost is 1 dollar per gradient evaluation on single example. We compare the number of iterations required to
reach ✏-suboptimality.

We see that SVRG is better than GD when n+  n, that is when the problem is well conditioned ( is high).When
aiming for a tiny error ✏, SVRG beats SGD, as 1

✏

becomes large.

Side remark: An important question is then: what is a good ✏ for machine learning?
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Algorithm Iterations Cost

SGD T = O(



✏

) O(



✏

)

GD T = O( log 1
✏

) O(n log 1
✏

)

SVRG T = O(log

1
✏

) O((n+ 2
) log 1

✏

) or O((n+ ) log 1
✏

)

or better O((n+ ) log 1
✏

)

Table 1: Comparison of full batch, stochastic, and variance reduced methods
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