
IFT 6085 - Lecture 12
Generative models

Scribe(s): Nicolas Gagné Instructor: Ioannis Mitliagkas

1 Summary

In this lecture we introduce generative models. We start by contrasting the discriminative vs generative paradigm with
an example. We then introduce a generative model – the Gaussian Discriminant Analysis model – and demonstrate that
it reduces to its discriminative counterpart: logistic regression. Having done so, we will have learned a lesson: gener-
ative models require stronger assumptions than discriminative models. When our assumptions are correct, generative
models perform better than discriminative models, but if our assumptions are wrong, they may perform much worse
than their more robust discriminative counterpart. Next, we make a further distinction among generative models: those
with a prescribed explicit specification and those where the distribution is implicit and induced by a procedure. We
conclude this lecture by introducing an example of implicit generative models—generative adversarial networks.

2 Discriminative vs Generative models

In this section, we introduce generative models by contrasting them with discriminative models. We start with an
example drawn from Andrew Ng online notes [2].
We consider a classification problem in which we want to learn to distinguish between elephants (y=1) and dogs
(y=0), based on some features of an animal. Given a training set, an algorithm like logistic regression tries to find
a straight line that separates the elephants from the dogs. In order to classify a new animal, we just check on which
side of the boundary it falls, and make our prediction accordingly. This approach corresponds to what is known as
a discriminative model; a discriminate model tries to directly learn a (possibly stochastic) mapping p(y|x) from the
space of input X to the labels {0, 1}.
Here’s a contrasting approach. First, looking at elephants, we build a model of what elephants look like. Similarly,
looking at dogs, we build a separate model of what dogs look like. Now, in order to classify a new animal, we match
the new animal against the elephant model, and match it against the dog model. We predict according to whether
the new animal looks more like the elephants or more like the dogs we have seen in the training set. This approach
corresponds to what is known as a generative model; a generative model tries to learn p(x|y) and p(y). In our case
where y indicates whether an example is a dog (0) or an elephant (1), we have that p(x|y = 0) models the distribution
of dogs’ features, and p(x|y = 1) models the distribution of elephants’ features. After modelling p(y), called the class

priors, and p(x|y), our algorithm can then use Bayes rule to derive the posterior distribution on y given x:

p(y|x) = p(x|y)p(y)
p(x)

.

We will explore the generative cousin of logistic regression in the next section.

3 Gaussian Discriminant Analysis

In Gaussian Discriminant Analysis, we assume that p(x|y) is distributed according to a multivariate normal distribu-
tion. We recall the definition of the multivariate normal distribution.

1

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 22, 2018

Definition 1 (Multivariate normal distribution). Given a mean vector µ 2 Rn

and a covariance matrix ⌃ 2 Rn⇥n

,

where ⌃ � 0 is symmetric and positive-definite, then the multivariate normal distribution N (µ,⌃) is defined by its

density:

p(x;µ,⌃) =

1

(2⇡)

n/2|⌃|1/2
exp

✓
�1

2

(x� µ)

T

⌃

�1
(x� µ)

◆
.

3.1 The Gaussian Discriminant Analysis model

The Gaussian Discriminative Analysis (GDA) model has parameters �, ⌃, µ0 and µ1 as follows:

y ⇠ Bernouilli(�)

p(x|y = 0) ⇠ N (µ0,⌃)

p(x|y = 1) ⇠ N (µ1,⌃)

Writing out the distributions, this is:

p(y) = �

y

(1� �)

1�y

p(x|y = 0) =

1

(2⇡)

n/2|⌃|1/2
exp

✓
�1

2

(x� µ0)
T

⌃

�1
(x� µ0)

◆

p(x|y = 1) =

1

(2⇡)

n/2|⌃|1/2
exp

✓
�1

2

(x� µ1)
T

⌃

�1
(x� µ1)

◆

Note that although we have distinct mean vectors µ0 and µ1, we have the same covariance matrix ⌃. In terms of our
dogs (0) and elephants (1) example above, these parameters can be interpreted as:

• � is the proportion of elephants in our population, whereas 1� � is the proportion of dogs.

• The elephants and dogs features are generated according to a multivariate normal centered at µ1 and µ0, respec-
tively. Both multivariate normals have the same variance, so this implies that features for both animals have a
similar spread; an assumption that might not quite hold if we haven’t normalized the features (for instance, the
animal’s weight and height).

Remember that we train generative models by building a model of what elephants look like and of what dogs look
like. We do so by finding the parameters that maximize the log-likelihood of our data (the observed animals). Given a
training set S :=

�
(x

(1)
, y

(1)
), . . . , (x

(m)
, y

(m)
)

�
, the log-likelihood of GDA for S is

`(�, µ0, µ1,⌃) = log

mY

i=1

p

⇣
x

(i)
, y

(i)
;�, µ0, µ1,⌃

⌘

= log

mY

i=1

p

⇣
x

(i)|y(i);µ0, µ1,⌃

⌘
p

⇣
y

(i)
;�

⌘

Maximizing the log-likelihood and we get

�

ML

=

1

m

mX

i=1
(

y

(i)=1
)

µ

ML

0 =

P
m

i=1
(

y

(i)=0
)

x

(i)

P
m

i=1
(

y

(i)=0
)

µ

ML

1 =

P
m

i=1
(

y

(i)=1
)

x

(i)

P
m

i=1
(

y

(i)=1
)

⌃

ML

=

1

m

mX

i=1

⇣
x

(i) � µ

y

(i)

⌘⇣
x

(i) � µ

y

(i)

⌘
T

2

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 22, 2018

Now that we have captured what an elephant and what a dog should look like, if we are given a new animal x to
classify, we can predict according to whether it looks more like an elephant or more like a dog, i.e., we return

argmax

y2{0,1}
p

�
y|x;�ML

, µ

ML

0 , µ

ML

1 ,⌃

ML

�

which can be computed directly by

argmax

y2{0,1}
p

�
x|y;µML

0 , µ

ML

1 ,⌃

ML

�
p(y;�

ML

).

We next show that a GDA model can be reduced to logistic regression.

3.2 GDA model and logistic regression

We will argue that if p(x|y) is a multivariate gaussian, then p(y|x) necessarily follows a logistic function. More
precisely:

Theorem 2. Given a Gaussian Discriminant Analysis model, the quantity p(y = 1|x;�, µ0, µ1,⌃), seen as a function

of x, can be expressed in the form

p(y = 1|x;�,⌃, µ0, µ1) =
1

1 + exp(�✓

T

x+ b)

,

where ✓ and b are some appropriate functions of ⌃, µ0, µ1 and �.

Proof.

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

(1)

=

p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

(2)

=

1

1 +

p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

. (3)

Where we get (1) by definition of conditional probability and (2) by the law of total probability. Taking a closer look
at

p(x|y = 0)p(y = 0)

p(x|y = 1)p(y = 1)

(4)

= exp

✓
� (x� µ0)

T

⌃

�1
(x� µ0)

2

+

(x� µ1)
T

⌃

�1
(x� µ1)

2

◆
1� �

�

(5)

= exp

�
x

T

⌃

�1
x� 2

�
µ

T

0 ⌃
�1

x

�
+ µ

T

0 ⌃
�1

µ0

2

+

x

T

⌃

�1
x� 2

�
µ

T

1 ⌃
�1

x

�
+ µ

T

1 ⌃
�1

µ1

2

!
1� �

�

(6)

= exp

2

�
µ

T

0 ⌃
�1

x

�
� µ

T

0 ⌃
�1

µ0 � 2

�
µ

T

1 ⌃
�1

x

�
+ µ

T

1 ⌃
�1

µ1

2

!
1� �

�

(7)

= exp

✓
2(µ0 � µ1)

T

⌃

�1
x� (µ0 � µ1)

T

⌃

�1
(µ0 + µ1)

2

◆
exp

✓
log

✓
1� �

�

◆◆
(8)

= exp

0

BB@

0

@
(µ0 � µ1)⌃

�1

| {z }
✓

1

A
T

x+

✓
� (µ0 � µ1)

T

⌃

�1
(µ0 + µ1)

2

+ log

✓
1� �

�

◆◆

| {z }
b

1

CCA = exp

�
✓

T

x+ b

�
. (9)

(10)

3

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 22, 2018

So we can indeed write

p(y = 1|x;�,⌃, µ0, µ1) =
1

1 +

p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=

1

1 + exp (✓

T

x+ b)

,

as desired.

We just argued that if p(x|y) are multivariate normals with shared ⌃, then p(y = 1|x; ✓,⌃, µ0, µ1) necessarily follows
a logistic function. GDA reduces to logistic regression. The converse, however, is not true; i.e., p(y = 1|x, ✓, b)
being a logistic function does not imply p(x|y) are multivariate normals. This shows that GDA makes stronger

modelling assumptions. When these modelling assumptions are correct, then GDA will find better fits to the data, and
is a better model. Specifically, when p(x|y) are indeed multivariate normals with shared ⌃, then GDA is asymptotically

efficient. Informally, this means that in the limit of very large training sets, i.e., for m large enough, there is no
algorithm that is strictly better than GDA. In contrast, logistic regression is more robust and less sensitive to incorrect
modeling assumptions.
In the next section, we make a further distinction between two types of generative models.

4 Prescribed vs Implicit Generative models

This section and the next are inspired by [1].
Prescribed Generative models are those that provide an explicit specification of the distribution of an observed
random variable x; inducing a log-likelihood function log q

✓

(x) with parameters ✓. For instance, the generative model
presented above—Gaussian discriminant analysis—is a prescriptive generative model.
Alternatively, Implicit Generative models are those that provide a procedure that generates data. More precisely,
implicit generative models use a latent variable z and transform it using a deterministic function G

✓

: Rm ! Rd,
where ✓ is indexing a family of such functions. Given a probability measure q on Rm, G

✓

induces a probability
measure p̂(x) on Rd:

p̂(E) := q

�
G

�1
✓

(E)

�
, for E a (measurable) subset of Rd

.

The objective would be to find a ✓ such that the induced p̂(x) is as ‘close’ as possible to the true data distribution p(x).

Figure 1: A cartoon of an implicit generative model where q is a unit gaussian and G

✓

is a neural network.

One of the main challenges is that computing p̂(x) can be highly intractable; for instance, when G

✓

is specified by
a deep neural network. This difficulty motivates the need for methods that side-step the intractability of computing
the likelihood. Generative adversarial networks (GANs), among other approaches, provide a solution for this type of
problem. We explore GANs in the next section.

4

IFT 6085 - Theoretical principles for deep learning Lecture 12: February 22, 2018

5 Generative Adversarial Networks

We start with our generator G

✓

introduced above. If we want to train G, we need a way to assess how ‘close’ the
generated p̂(x) is to the true data distribution p(x). In order to do so, we introduce a discriminator D whose task is
to tell p(x) apart from p̂(x); if a discriminator D can’t tell if an instance x came from p(x) or p̂(x), then—according
to D—these two distributions are ‘close’ to each other.
Given an instance x, D(x) 2 [0, 1] reflects how strongly D believes x to be a sample from the true distribution
p(x). When x is indeed from the true distribution, the loss incurred by D when predicting D(x) is � logD(x).
Conversely, when x comes from the G generated distribution p̂(x), the loss incurred by D when predicting D(x) is
� log (1�D(x)). If we choose to sample from p(x) half of the time and to sample from p̂(x) the other half of the
time, then the expected loss of D is

L(D) = �1

2

E
x⇠p(x) [logD(x)]� 1

2

E
x⇠p̂(x) [log (1�D(x))] .

So, for a given generator G, the discriminator tries to minimize the above, which is equivalent to the following:

max

D

E
x⇠p(x) [logD(x)] + E

x⇠p̂(x) [log (1�D(x))] .

The generator G, on the other hand, wants to ‘preemptively’ generate the worst distribution p̂(x) for its adversary D:

min

p̂(x)
max

D

E
x⇠p(x) [logD(x)] + E

x⇠p̂(x) [log (1�D(x))] ,

by abusing notation, we rewrite it as:

min

G

max

D

E
x⇠p

[logD(x)] + E
z⇠q

[log(1�D (G(z))]

| {z }
V (G,D)

.

Setups like the one above are called generative adversarial networks (GANs). They are often framed as instances of
adversarial optimization; for instance, interpreting D and G as playing a minimax game with value function V (G,D).
Generative adversarial networks can be easily implemented. For instance, the initial implementation for solving the
above min-max problem was based on this simple iterative algorithm: first fix G, then maximize over D; next, fix D,
then maximize over G; repeat until satisfied. So no approximate inference nor estimation of partition function was
needed.
But they can be difficult to train: gradients saturation and mode collapse can be problematic. In the next lecture, we
will see how we can mitigate some of those problems by using what is known as the Wasserstein GAN.

References

[1] S. Mohamed and B. Lakshminarayanan. Learning in implicit generative models. arXiv preprint arXiv:1610.03483,
2016.

[2] A. Ng. CS229 Lecture notes generative learning algorithms. http://cs229.stanford.edu/notes/

cs229-notes2.pdf. Accessed: 2018-03-05.

5

http://cs229.stanford.edu/notes/cs229-notes2.pdf
http://cs229.stanford.edu/notes/cs229-notes2.pdf

	Summary
	Discriminative vs Generative models
	Gaussian Discriminant Analysis
	The Gaussian Discriminant Analysis model
	GDA model and logistic regression

	Prescribed vs Implicit Generative models
	Generative Adversarial Networks

