IFT 6085 - Lecture 11
(Stability and PAC Bayes)
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Scribe(S): [Amy Zhang, William Fedus] Instructor: Ioannis Mitliagkas

Summary

Sufficient condition: Given enough samples we can achieve a good enough generalization. However, typically
in deep learning, we never have large enough data sets to get non-vacuous or meaningful bounds.
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How can we go from PAC Bayes to a non-vacuous generalization bound?

By sacrificing some data as part of a dedicated test set, we can measure test set generalization and achieve a tighter
bound than the weak population bounds. See Tutorial on Practical Prediction Theory for Classification [1] for a
comprehensive examination.

Stability
Definition 1 (Uniformly [-stable algorithm).

hs = A(S),hs € H
Algorithm Ais stable if¥(s, 2),¥i = {1, ...,n}

sup |l(hs,2") = l(hg.-,2")| < B
Z/e€Z

where S is the data set, z is an evaluation sample and S; . refers to replacing the it" element in S with z.

Theorem 2.
M, /2 In2/4

2) n

R[h] < Ry[hs] + B+ ... + (Bn +

The term (Bn + %)/ 2222 is O(8+/n). Informally, an algorithm is stable if 3 = O(%). If stability is O( =), this
term is O(1) and we can no longer show decrease in generalization gap with with increase in n.

Empirical Risk Minimization + Regularization is Stable

Notation:
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where h,, is a model parameterized by weights w.

Theorem 3 (ERM with regularization is (3-stable).

- A
fs(w) = Rs(w) + §||w||§
Proof. Consider weights u, v for two different models.
. A A A
fs(v) = fs(w) = [Rs(v) + Slwl3) - [Rs(w) + Sllull3]

We perturb the dataset by replacing the data point at ¢ with z]. Now we get:

v,2z) —U(v,2)  Uu,z) —l(u, 2))

Folw) — f(u) = Rs,_, (0) + Mol — (Bs,_, ) + ljulf) + 20 .
Wv,z;) = Uv,27)  Uu,zi) — 1w, %)

) <4

= fsi,zlf (U) - fSLZQ (u) +

Now we substitute v = A(S; ./ ) and u = A(S).

n n

Because

Assumption 4. [(-|z) is L-Lipschitz.

LA(S"), 2i) = U(A(S),z1) _ UA(S™#), 21) — I(A(S), )

n n

fs(A(Si21)) — fs(A(S)) <

L
< QEHA(S) = A(Si 21)||2

Assumption 5. Rg(w) is cvx.
Which gives us fg(w) is A-str cvx. Now we perform a Taylor expansion:
A
Fs(A(Siz)) = fs(A(S)) = SIIA(S;z) — AS)II3
Since \A(S) is the minimizer of f; and A-str cvx the first term disappears.

From[T]and 2] we get:

4L
An

If we perturb the data by a single element, we learn A that can become arbitrarily close for large n.
We then use 3|and the L-Lipschitz property of I(, z):

IA(S) = A(Si )l <

— SDII(A(S). 2) — UA(S),2)| < S

(1)

2

3)
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Stochastic Gradient Descent (SGD) is Stable

Stability Theorem
Recall the SGD update formula,

Wit1 = wy — aVl(wy, i t), 3 ~ uniform(1,-- -, n) 4

where w; is the weight iterate at time ¢, o is an (annealing) learning rate at time ¢ and I(w, 2; 1) is the computed loss
for the current weight iterate for a particular example z; ;.

Theorem 6. If f(-, z) is y-smooth, convex and L-Lipschitz, then

Analysis:

We are no longer requiring the function to be strongly convex. Additionally, this result holds for a finite number of
steps 7.

Stability Proof (Rough Outline)

We will consider two runs of the SGD algorithm. One run will be on the original data set S and the other run will be
on the data set S; .. Recall, this indicates the same data set .S only now with the ¥ element swapped with element

. In order to compare the stablhty between the two runs, we maintain the same order of element selection (same
random seed) fort =1,---,7T.

Definition 7.
0¢ = ||wy —w£||

where w; denotes the iterate for the SGD algorithm on the data set Si,z;~
We can write the expectation of the difference d;4 1 as the following:

E[b6¢t41] = P(it = ) E[0t41]is = 1] + P(it # i) E[0¢41]is # 1] o)
We introduce two Lemmas
Lemma 0.1. We may use co-coercivity to show
E[641]ir # 1] < E[64]
Lemma 0.2. And for the index that has been swapped
E[b¢41]is = 1] < E[d¢] 4+ 20 L
where L is the Lipschitz value.

Using Lemmas we may rewrite Equation [5]as:

1 1
which when recursively unrolled yields the following final ép
T—1
204 L
E[or] = E[||wr — wrl]] < Z - (7)
t=0

SGD is therefore stable since ZT ! QO:L = Bis O(+) for n data points.
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