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Summary
Sufficient condition: Given enough samples we can achieve a good enough generalization. However, typically
in deep learning, we never have large enough data sets to get non-vacuous or meaningful bounds.
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Stability Bounds

How can we go from PAC Bayes to a non-vacuous generalization bound?

By sacrificing some data as part of a dedicated test set, we can measure test set generalization and achieve a tighter
bound than the weak population bounds. See Tutorial on Practical Prediction Theory for Classification [1] for a
comprehensive examination.

Stability

Definition 1 (Uniformly β-stable algorithm).

hs = A(S), hs ∈ H

Algorithm A is stable if ∀(s, z),∀i = {1, ..., n}

sup
z′∈Z

|l(hs, z′)− l(hsi,z , z′)| ≤ β

where S is the data set, z is an evaluation sample and Si,z refers to replacing the ith element in S with z.

Theorem 2.

R[hs] ≤ R̂s[hs] + β + ...+ (βn+
M

2
)

√
2 ln 2/δ

n

The term (βn+ M
2 )
√

2 ln 2/δ
n is O(β

√
n). Informally, an algorithm is stable if β = O( 1n ). If stability is O( 1√

n
), this

term is O(1) and we can no longer show decrease in generalization gap with with increase in n.

Empirical Risk Minimization + Regularization is Stable
Notation:

R̂S(w) , R̂S(hw)
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where hw is a model parameterized by weights w.

l(h, z) ≡ l(h(x), y)
l(hw, z) ≡ l(w, z)

Theorem 3 (ERM with regularization is β-stable).

fS(w) = R̂S(w) +
λ

2
||w||22

Proof. Consider weights u, v for two different models.

fS(v)− fS(u) = [R̂S(v) +
λ

2
||v||22]− [R̂S(u) +

λ

2
||u||22]

We perturb the dataset by replacing the data point at i with z′i. Now we get:

fS(v)− fS(u) = R̂Si,z′
i
(v) + λ||v||22 − (R̂Si,z′

i
(u) +

λ

2
||u||22) +

l(v, zi)− l(v, z′i)
n

− l(u, zi)− l(u, z′i)
n

= fSi,z′
i
(v)− fSi,z′

i
(u) +

l(v, zi)− l(v, z′i)
n

− l(u, zi)− l(u, z′i)
n

Now we substitute v = A(Si,z′i) and u = A(S).

fS(A(Si,z′i))− fS(A(S)) =fSi,z′
i
(A(Si,z′i))− fSi,z′

i
(A(S))

+
l(A(Si,z′i), zi)− l(A(Si,z′i), z

′
i)

n
− l(A(S), zi)− l(A(S), z′i)

n

Because

fSi,z′
i
(A(Si,z′i)) = min

w
fSi,z′

i
(w)

=⇒ ∀wfSi,z′
i
(w) ≥ f(Si,z′i)(A(Si,z′i))

Assumption 4. l(·|z) is L-Lipschitz.

fS(A(Si,z′i))− fS(A(S)) ≤
l(A(Si,z′i), zi)− l(A(S), zi)

n
− l(A(Si,z′i), z′i)− l(A(S), z′i)

n

≤ 2
L

n
||A(S)−A(Si,z′i)||2 (1)

Assumption 5. R̂S(w) is cvx.

Which gives us fS(w) is λ-str cvx. Now we perform a Taylor expansion:

fS(A(Si,z′i))− fS(A(S)) ≥
λ

2
||A(Si,z′i)−A(S)||

2
2 (2)

Since A(S) is the minimizer of fs and λ-str cvx the first term disappears.
From 1 and 2 we get:

||A(S)−A(Si,z′i)|| ≤
4L

λn
(3)

If we perturb the data by a single element, we learn A that can become arbitrarily close for large n.
We then use 3 and the L-Lipschitz property of l(·, z):

=⇒ sup
z
[l(A(S), z)− l(A(Si,z′i), z)| ≤

4L2

λn
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Stochastic Gradient Descent (SGD) is Stable

Stability Theorem
Recall the SGD update formula,

wt+1 = wt − αt∇wl(wt, zi,t), it ∼ uniform(1, · · · , n) (4)

where wt is the weight iterate at time t, αt is an (annealing) learning rate at time t and l(wt, zi,t) is the computed loss
for the current weight iterate for a particular example zi,t.

Theorem 6. If f(·, z) is γ-smooth, convex and L-Lipschitz, then

β ≤ 2L2

n

T∑
t=1

αt

Analysis:
We are no longer requiring the function to be strongly convex. Additionally, this result holds for a finite number of
steps T .

Stability Proof (Rough Outline)
We will consider two runs of the SGD algorithm. One run will be on the original data set S and the other run will be
on the data set Si,z′i . Recall, this indicates the same data set S only now with the ith element swapped with element
z′i. In order to compare the stability between the two runs, we maintain the same order of element selection (same
random seed) for t = 1, · · · , T .

Definition 7.
δt = ||wt − w′t||

where w′t denotes the iterate for the SGD algorithm on the data set Si,z′i .
We can write the expectation of the difference δt+1 as the following:

E[δt+1] = P (it = i)E[δt+1|it = 1] + P (it 6= i)E[δt+1|it 6= 1] (5)

We introduce two Lemmas

Lemma 0.1. We may use co-coercivity to show

E[δt+1|it 6= 1] ≤ E[δt]

Lemma 0.2. And for the index that has been swapped

E[δt+1|it = 1] ≤ E[δt] + 2αtL

where L is the Lipschitz value.

Using Lemmas 0.1, 0.2, we may rewrite Equation 5 as:

E[δt+1] ≤
(
1− 1

n

)
E[δt] +

1

n
(E[δt] + 2αtL) (6)

which when recursively unrolled yields the following final δT

E[δT ] = E[||wT − w′T ||] ≤
T−1∑
t=0

2αtL

n
(7)

SGD is therefore stable since
∑T−1
t=0

2αtL
n ≡ β is O( 1n ) for n data points.
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