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1 Summary
In the previous lecture we defined the concept of uniform stability for an algorithm A. We also derived a bound for
the expected value of the defect D[hS ] of a hypothesis hS learned by a β-uniformly stable algorithm A

−β ≤ ES [D[hS ]] ≤ β.

In this lecture, we review the PAC learning setup, some definitions and the result presented in the previous lecture and
go further with the analysis of stable learning algorithms by applying McDiarmid’s inequality to find a bound with
high probability to the actual value of D[hS ].

2 PAC Learning Setup
In the PAC (probably approximately correct) learning setup, we consider the following definitions.

Definition 1 (Training dataset).
S = {z1, z2, . . . , zn},

where all zi = (xi, yi) are i.i.d. sampled from the unknown data distribution D.

In standard learning problems, xi represents a feature vector and yi the label of the i-th sample.

Definition 2 (Hypothesis class). Represents the set of all possible hypothesis for a fixed architecture.

H = {h1, h2, . . .}.

Definition 3 (Loss Function).
` : Y × Y −→ [0,M ].

Note that in some cases we overloaded the notation for ` as follows:

`(h, z) = `(h(x), y).

Definition 4 (Population risk).
R[h] = Ez∼D [`(h(x), y)] .

Definition 5 (Empirical risk).

R̂S [hS ] =
1

n

n∑
i=1

`(hS(xi), yi).
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3 Stability
In order to define the concept of stability, we first introduce the definition of perturbed dataset.

Definition 6 (Perturbed dataset). Given a dataset S and an index i, the perturbed dataset Si,z is defined as

Si,z = {z1, z2, . . . , zi−1, z, zi+1 . . . zn}.

The perturbed dataset Si,z is defined when a sample z replaces the i-th element in the dataset S.

All bounds previously shown in class were algorithm agnostic, i.e. they were just dependent on the hypothesis class.
To introduce the notion of stability, we define the learning algorithm A as follows

Definition 7 (Algorithm). A learning algorithm A is defined as the following mapping

A : (X × Y)n → H.

Here, hS represents the hypothesis class that was trained using the algorithm A on the dataset S, i.e. hS = A(S).

Definition 8 (Uniform stability). An algorithm A is β-uniformly stable with respect to the loss function ` for all
(S, z) ∈ Zn+1 and for all i ∈ {1, 2, . . . , n} if

sup
z′∈Z

|`(hS , z′)− `(hSi,z , z′)| ≤ β.

Basically, if we say that an algorithm is β-uniformly stable, we mean that any outlier in the dataset does not affect the
loss ` drastically. It is important to emphasize that this is a uniform bound because it is valid for all datasets S and
indexes i.

In the last lecture, the definition of defect was presented and Theorem 10 was proven. We will review those results
before showing a bound with high probability for D[hS ].

Definition 9 (Defect).
D[hS ] = R[hS ]− R̂S [hS ].

Theorem 10 (Bounding the expectation of the defect). If A is a β-uniformly stable algorithm, then

−β ≤ ES [D[hS ]] ≤ β.

Proof was given in the previous class.

Property 11 (Relation between the empirical and the population risk).

ES [R[hS ]] ≤ ES [R̂S [h]] + β.

Proof. Follows directly from Definition 9 and Theorem 10.

Note this is a bound in the expectation, which can be considered not strong in the sense that if R[hS ] and R̂S [hS ]
match in expectation, it does not imply that one does not exceed the other for all possible hS . The main goal of this
lecture is to extend the latter result to a high probability bound for actual values of R[hS ] and R̂S [hS ].
In the following theorem we introduce McDiarmid’s inequality.

Theorem 12 (McDiarmid inequality). Let V1, V2, . . . , Vn ∈ V be independent random variables and v1, v2, . . . vn
be samples drawn from these random variables. If a function F : Vn → R has the following property for all
i ∈ {1, . . . , n}:

sup
v1,v2,...,vn,v′i

|F (v1, v2, . . . , vn)− F (v1, v2, . . . , vi−1, v′i, vi+1, . . . , vn)| ≤ ci,

then

P (|F (V1, V2, . . . , Vn)− E[F (V1, V2, . . . , Vn)]| > ε) ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.
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Proof. See Appendix D.2 of [1].

4 Bounding the defect with high probability

Theorem 13 (Bound for the defect). Consider a β-uniformly stable algorithm A with respect to a loss function
` : Y × Y → [0,M ]. The absolute difference of the defect calculated on a dataset S and on a perturbed version of
this dataset Si,z is bounded by

|D[hS ]−D[hSi,z ]| ≤ 2β +
M

n
.

Proof. Let us expand the following value:

|D[hS ]−D[hSi,z ]| = |R[hS ]− R̂S [hS ]−R[hSi,z ] + R̂S [hSi,z ]|. (1)

Using the triangle inequality, we find the following upper bound for the RHS of Eq. 1:

|R[hS ]− R̂S [hS ]−R[hSi,z ] + R̂S [hSi,z | ≤ |R̂S [hSi,z ]− R̂S [hS ]|+ |R[hS ]−R[hSi,z ]|.

Replacing this result in Eq. 1, we obtain:

|D[hS ]−D[hSi,z ]| ≤ |R̂S [hSi,z ]− R̂S [hS ]|+ |R[hS ]−R[hSi,z ]|. (2)

Now, we use the β-uniform stability of A with respect to ` to find a bound for |RS [hS ]−RS [hSi,z ]|:

|R[hS ]−R[hSi,z ]| = Ez′ [`(hS , z′)]− Ez′ [`(hSi,z , z′)],

= Ez′ [`(hS , z′)− `(hSi,z , z′))],

=

∫
z′∈Z

[`(hS , z
′)− `(hSi,z , z′)] dµ(z′),

≤ β.

(3)

Using the result obtained in Eq. 3 and writing R̂[hSi,z ] and R̂[hS ] according to their respective definitions, it is
possible to rewrite Eq. 2 as

|D[hS ]−D[hSi,z ]| ≤ β +

∣∣∣∣∣∣ 1n
n∑
j=1

`(hSi,z , zj)− `(hS , zj)

∣∣∣∣∣∣ ,
= β +

1

n
|`(hSi,z , z)− `(hS , zi)|+

1

n

∑
j 6=i

|`(hSi,z , zj)− `(hS , zj)| ,
(4)

Reminding the fact that ` : Y × Y → [0,M ] and using the β-uniform stability property of A in Eq. 4 we obtain the
desired bound:

|D[hS ]−D[hSi,z ]| ≤ β +
M

n
+

(n− 1)β

n
,

≤ 2β +
M

n
.

(5)

Theorem 14 (Bound for the population risk of a β-uniformly stable algorithm). Consider a β-uniformly stable algo-
rithm A with respect to a loss function ` : Y × Y → [0,M ] and a hypothesis hS with |S| = n. The following bound
holds with probability 1− δ:

R[hS ] ≤ R̂S [hS ] + β +

(
nβ +

M

2

)√
2 log 2

δ

n
.
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Proof. Using theorem 13, we state McDiarmid’s inequality forD[hS ] and then use this result to find a high probability
bound for D[hS ]:

sup
S,i,z
|D[hS ]−D[hSi,z ]| ≤ 2β +

M

n
, (6)

then

P (|D[hS ]− E[D[hS ]]| > ε) ≤ 2 exp

(
−2ε2∑n

i=1

(
2β + M

n

)2
)
,

= 2 exp

(
−2nε2

(2nβ +M)
2

)
,

= 2 exp

(
−2nε2

4
(
nβ + M

2

)2
)
,

= 2 exp

(
−nε2

2
(
nβ + M

2

)2
)
.

(7)

Denoting δ = 2 exp

(
−nε2

2(nβ+M
2 )

2

)
and solving this equation for ε, we obtain:

δ = 2 exp

(
−nε2

2
(
nβ + M

2

)2
)
⇒ nε2 = 2 log

2

δ

(
nβ +

M

2

)2

,

⇒ ε =

(
nβ +

M

2

)√
2 log 2

δ

n
.

(8)

Thus, with probability 1− δ

|D[hS ]− E[D[hS ]]| ≤ ε,
D[hS ] ≤ E[D[hS ]] + ε,

D[hS ] ≤ β + ε.

Replacing ε by the result previously obtained in Eq. 8

D[hS ] ≤ β +

(
nβ +

M

2

)√
2 log 2

δ

n
, (9)

and, thus, using Definition 9 we finally get the desired result

R[hS ] ≤ R̂S [hS ] + β +

(
nβ +

M

2

)√
2 log 2

δ

n
. (10)

The following illustration represents a summary of the bounds stated in Theorem 10 and 14 (in terms of the defect):

−β β−β − ε β + ε

D[hS ] (w.p. 1− δ)

E[D[hS ]]

One can observe that despite the fact the bound for E[D[hS ]] is tighter, we have no guarantees that the actual of D[hS ]
lies in the interval [−β, β]. On the other hand, it possible to assure with probability 1− δ will be in [−β − ε, β + ε].
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